
MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. (i) Probably the easiest example is to take the zero ideal in Z.
This is prime, as Z is an integral domain, but it is not maximal as the
quotient, Z, is not a field.
(ii) Take the example given in (iii).
(iii) By Gauss’ Lemma, Z[x] is a UFD. On the other hand I claim the
ideal I = 〈2, x〉 is not principal. Indeed suppose it was, so that 〈2, x〉 =
〈f(x)〉. As 2 ∈ I it follows that f(x) divides 2. Up to associates, it
would then follow that f(x) = 1 or 2. By the same token, f(x) must
divide x as well, and so f(x) = 1. But this is a contradiction, as 1 /∈ I.
2. We have to check that N is non-empty and closed under addition
and scalar multiplication.
N is clearly non-empty as N1 is non-empty.
Suppose that a and b ∈ N . Then there are indices i and j such that
a ∈ Ni and b ∈ Nj. Suppose that k is the maximum of i and j. Then
a ∈ Nk and b ∈ Nk. As Nk is closed under addition then a + b ∈ Nk.
But then a+ b ∈ N . Thus N is closed under addition.
Now suppose that a ∈ N and r ∈ R. Then a ∈ Ni some i. As Ni is
closed under scalar multiplication, ra ∈ Ni. But then ra ∈ N and so
N is closed under scalar multiplication.

Challenge Problems: (Just for fun)

3. (a) Suppose that n1, n2, . . . , nk generateN so thatN = 〈n1, n2, . . . , nk〉.
Let p1, p2, . . . , pk be the images of n1, n2, . . . , nk. Then p1, p2, . . . , pk
generates the image of N , which is P . Thus P is finitely generated.
Now suppose that P is finitely generated. Let m1,m2, . . . ,ma and
p1, p2, . . . , pb be generators ofM and P . Let n1, n2, . . . , na be the images
of m1,m2, . . . ,ma. As N −→ P is surjective we may pick na+i ∈ N
mapping to pi. We claim that n1, n2, . . . , nc generates N , where c =
a+ b.
Suppose that we start with n ∈ N . Let p be the image in P . Then we
may find ri ∈ R, a < i < b, such that

p =
∑
i

ra+ipi.

Let
q =

∑
i>a

rini,
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so that q maps to p. Let

z = n− q.
Then z is sent to zero, so that we may find m ∈ M mapping to z.
Therefore we may find r1, r2, . . . , ra such that m =

∑
i rimi. In this

case

z =
∑
i

rini.

It follows that

n = z + q

=
∑
i≤a

rini +
∑
a<i≤c

rini

=
∑
i

rini.

Thus N = 〈n1, n2, . . . , nc〉 so that N is finitely generated.
(b) Let us give names to the two maps in the short exact sequence, i
and π.
Pick free generators X of P . Pick Y ⊂ N such that the map Y −→ X
induced by π is a bijection. In other words, for every x ∈ X, pick
y ∈ Y mapping to x, so that π(y) = x. Let

f : X −→ Y

be the inverse function. By the universal property of P we may find
an R-linear map

φ : P −→ N

which extends f . Note that the composition of f and Y −→ X is
the identity, so that the composition of φ and π : N −→ P is also the
identity (since the identity P −→ P is an R-linear map that extends
the identity X −→ X and there is only one map that works). The map
φ is called a splitting of the exact sequence.
We show that the existence of a splitting implies that the short exact
sequence splits (in fact the sequence splits if and only if there is a
splitting).
So now we have two R-linear maps, i : M −→ N and φ : P −→ N .
This induces an R-linear map

ψ : M ⊕ P −→ N

by the universal property of the direct sum. In fact

ψ(m, p) = i(m) + φ(p).
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We have

(π ◦ ψ)(m, p) = π(ψ(m, p))

= π(i(m) + φ(p))

= π(i(m)) + π(φ(p))

= 0 + p

= p.

In particular if (m, p) ∈ Ker(ψ) then p = 0, so that i(m) = 0, so that
m = 0.
Hence ψ is injective. Now suppose that n ∈ N . Let p = π(n) and let
n′ = φ(p).
Consider n− n′. We have

π(n− n′) = 0,

so that we may find m ∈M such that i(m) = n− n′. It follows that

ψ(m, p) = i(m) + φ(p) = n.

Hence ψ is surjective. Thus ψ is an isomorphism and so the short exact
sequence does indeed split.
Note that one can also show that the sequence splits if and only if there
an R-linear map ξ : N −→M such that the composition of i : M −→ N
and ξ : N −→M is the identity.
(c) Consider the short exact sequence of Z-modules

0 −→ Z −→ Z −→ Z2 −→ 0,

It is clear that Z is not isomorphic to Z ⊕ Z2, so that this sequence
does not split.
4. (a) We first show that n is injective. This involves “diagram chas-
ing”.
Pick c ∈ C in the kernel of n. Let d ∈ D be the image of c. Then d
maps to zero in D′. Indeed let d′ ∈ D′ be the image of d. If c′ is the
image of c in C ′ then c′ maps to d′, as the square containing C, D, C ′

and D′ commutes.
But c′ = 0 is zero by hypothesis and so d′ = 0. As p is an isomorphism
it is surely injective. Thus d must be zero. As the top row is exact
it follows that we may find b ∈ B mapping to c. Let b′ be the image
of b. Then b′ maps to c′ = 0, as the diagram commutes (we just need
commutativity of the appropriate square).
As the bottom row is exact we must be able to find a′ ∈ A′ mapping to
b′. As l is surjective it follows that we may find a ∈ A mapping to a′. If
βB is the image of a then β is sent to b′, as the first square commutes.
But b is also sent to b′. As m is injective it follows that β = b.
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As the top row is exact it follows that b is sent to 0 ∈ C. But the image
of b is c, so that c = 0. Hence n is injective.
Careful examination of the proof tells us that if we have a commutative
diagram

A - B - C - D

A′

l

?
- B′

m

?
- C ′

n

?
- D′

p

?

of R-modules with exact rows such that if m and p are injective and l
is surjective, then n is injective. This is one of the four lemmas.
Now we turn to surjectivity. As the proof is similar to injectivity we
give less details.
We start with c′ ∈ C ′. Let d′ ∈ D′ be the image of c′. Then we may
find d ∈ D mapping to d′ as p is surjective. Let e ∈ E be the image of
d and let e′ ∈ E ′ be the image of e. Then e′ is also the image of d′. As
d′ is the image of c′ it follows that e′ = 0. As q is injective it follows
that e = 0.
But then d must be the image of c ∈ C. Let c′′ ∈ C ′ be the image
of c. Then c′′ is sent to d′ as c is sent to d. It follows the difference
γ′ = c′ − c′′ is sent to zero. But then γ′ is the image of β′ ∈ B′. As m
is surjective we may find β ∈ B mapping to β′ ∈ B′. Let γ ∈ C be the
image of β. Then γ maps to γ′.
Consider c+ γ ∈ C. This maps to

c′′ + γ′ = c′′ + (c′ − c′′) = c′.

Thus n is surjective.
Once again, looking carefully at what we actually use in the proof of
surjectivity gives us the other four lemma:
If we have a commutative

B - C - D - E

B′

m

?
- C ′

n

?
- D′

p

?
- E ′

q

?

of R-modules with exact rows such that if m and p are surjective and
q is injective, then n is surjective.
(b) By assumption, we have a commutative diagram

0 - Mi
- Ni

- Pi
- 0

= = = =

0 - Mj
- Nj

n

?
- Pj

- 0
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with exact rows. The equals signs indicates that we have the same
object. The four equals signs gives rise to four downward R-linear
maps, which are all isomorphisms.
In particular the two extreme vertical maps are surjective and injective.
It follows that the middle map is an isomorphism.
As this map is an inclusion map we must have Ni = Nj.
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