MODEL ANSWERS TO THE SIXTH HOMEWORK

1. Suppose that m and n are in M. Then

$$
\begin{aligned}
\phi(m+n) & =r(m+n) \\
& =r m+r n \\
& =\phi(m)+\phi(n) .
\end{aligned}
$$

Thus ϕ is additive. Now suppose that $s \in R$. Then

$$
\begin{aligned}
\phi(s m) & =r(s m) \\
& =(r s) m \\
& =s(r m) \\
& =s \phi(m)
\end{aligned}
$$

Thus ϕ is R-linear.
2. Let N be a submodule of M. Then N is an additive subgroup of M and so it is non-empty and closed under addition. It is also closed under multiplication by definition of the inherited rule for multiplication.
Now suppose that N is non-empty and closed under addition and scalar multiplication. As N is non-empty and closed under addition, it follows that it is an additive subgroup. The other axioms obviously hold in N, since they hold in the larger set M.
Thus N is a submodule.
3. Let K be the kernel of ϕ. As ϕ is a homomorphism of the underlying additive groups, it follows that K is an additive subgroup. Suppose that $r \in R$ and $k \in K$. We have

$$
\begin{aligned}
\phi(r k) & =r \phi(k) \\
& =r \cdot 0 \\
& =0 .
\end{aligned}
$$

Thus $r k \in K$. It follows that K is closed under scalar multiplication. Therefore K is a submodule.
4. Let M_{i} be a collection of submodules of an R-module M and let N be their intersection. Then N is an additive subgroup as each M_{i} is an additive subgroup. Suppose that $r \in R$ and $n \in N$. Then for every $i \in I, n \in M_{i}$. As M_{i} is an R-module, it follows that $r n \in M_{i}$. As this is true for every i, in fact $r n \in N$. Thus N is closed under scalar multiplication and so it is a submodule.
5. Let $M_{i}, i \in I$ be the set of all submodules of M that contain X. Then N, the intersection of every M_{i} is a submodule of M, which contains X. As $N \subset M_{i}$ it is clearly the smallest such submodule.
6 . Let F be the set of all functions from X to M. We need to define a rule of addition and scalar multiplication. Suppose that f and g are elements of F. Define $f+g$ as the pointwise sum, so that

$$
(f+g)(x)=f(x)+g(x) .
$$

Similarly, given $r \in R$ and $f \in F$, define $r f$ as the pointwise product,

$$
(r f)(x)=r(f(x))
$$

It is an easy matter to check that with this rule of addition and scalar multiplication, F becomes an R-module.
7. Let $H=\operatorname{Hom}_{R}(M, N)$ be the set of all R-module homomorphisms. Then H is a subset of F, the set of all functions from M to N. It suffices to prove that H is non-empty and closed under addition and scalar multiplication.
First note that the zero map, which sends every element of M to the zero element of N, is R-linear. Thus H is certainly non-empty. Suppose that f and g are elements of H. We need to prove that $f+g$ is R-linear. Let m and n be elements of M and r and s be elements of R. We have

$$
\begin{aligned}
(f+g)(r m+s n) & =f(r m+s n)+g(r m+s n) \\
& =r f(m)+s f(n)+r g(m)+s g(n) \\
& =r f(m)+r g(m)+s f(m)+s f(n) \\
& =r(f+g)(m)+s(f+g)(n) .
\end{aligned}
$$

Thus $f+g$ is indeed R-linear. It is equally easy and just as formal to prove that $r f$ is R-linear. Thus H is closed under addition and scalar multiplication and so H is an R-module.
8. Since the arbitrary intersection of ideals is an ideal, it suffices to prove that I is an ideal, in the case that X contains one point x. Clearly $0 \in I$. Thus I is non-empty. Suppose that i and j are elements of I. Then

$$
\begin{aligned}
(i+j) x & =i x+j x \\
& =0+0=0 .
\end{aligned}
$$

Thus $i+j \in I$ and I is closed under additition. Now suppose that $r \in R$ and $i \in I$. Then

$$
\begin{aligned}
r i(x) & =r(i x) \\
& =r 0 \\
& =0 .
\end{aligned}
$$

Thus $r i \in I$ and I is an ideal. Here is another way to conclude that I is an ideal. Let

$$
\phi: R \longrightarrow \operatorname{Hom}_{R}(M, M)
$$

be the natural map which sends an element R to the R-linear map, $m \longrightarrow r m$. It is easy to see that ϕ is R-linear. Replacing M by the module generated by X, note that an element $r \in R$ is in I if and only if $\phi(r)$ is the zero map. Thus I is the kernel of ϕ. It also follows that I is also the annihilator of $\langle X\rangle$.
9. (i) Easy.
(ii) First we write down the inverse of $1-x$. By a formal analogy with geometric series, we guess the answer is

$$
1+x+x^{2}+\ldots
$$

We check this. We need to compute the product,

$$
(1-x)\left(1+x+x^{2}+\ldots\right)
$$

The constant term is clearly 1 . In degree n, there are two terms, one coming from x^{n} from the second bracket and 1 from the first, which gives coefficient 1, and the second one coming from x^{n-1} from the second bracket and $-x$ from the first, which gives coefficient -1 . In total we then have $0=1-1$.
In general, then, suppose that we have

$$
f(x)=a+b x+\ldots,
$$

where a is a unit in R. Multiplying through by the inverse of a, we might as well assume that

$$
f(x)=1+b x+\cdots=1-y
$$

for some power series y. Now formally we guess that the inverse is

$$
1+y+y^{2}+\ldots
$$

The only subtle thing to be careful of is that this involves an infinite sum, which does not a priori make sense. On the other hand, note that to compute the coefficient of x^{n}, (after substituting for y) we only need the first $n+1$ terms. Thus each coefficient can be computed using only
finitely many terms and so the sum does make sense. With this said, it is then clear that

$$
\left(1+y+y^{2}+\ldots\right)(1-y)=1
$$

for the same reasons as before. Thus the inverse of f is $1+y+y^{2}+\ldots$. (iii) Easy. Suppose that

$$
f(x)=a x^{d}+\ldots \quad \text { and } \quad g(x)=b x^{d}+\ldots
$$

for some a and b, where dots indicate higher terms. In this case

$$
f(x) g(x)=a b x^{d+e}+\ldots
$$

and since R is an integral domain, $a b \neq 0$.
(iv) Immediate from (iii).
(v) Define a function

$$
d: F \llbracket x \rrbracket-\{0\} \longrightarrow \mathbb{N} \cup\{0\}
$$

by sending a power series to its degree. We have to check two things. The first follows immediately from (iii).
Now we have to check that if $f(x)$ and $g(x)$ are two power series, then we may find $q(x)$ and $r(x)$ such that

$$
g(x)=q(x) f(x)+r(x)
$$

where either $r(x)=0$ or the degree of $r(x)$ is less than the degree of $f(x)$. There are two cases. If the degree of $g(x)$ is less than the degree of $f(x)$ there is nothing to do; take $q(x)=0$ and $r(x)=g(x)$. In this case the fact that $r(x)$ has degree less than $f(x)$ is clear.
Otherwise I claim that $f(x)$ divides perfectly into $g(x)$. To see this, note that we have

$$
\begin{aligned}
f(x) & =a x^{d}+\ldots \\
& =x^{d}(a+\ldots) \\
& =x^{d} u .
\end{aligned}
$$

Here as $a \neq 0$ and F is a field, a is a unit. Thus u is a unit. But then by the same token, $g(x)=x^{e} v$, where e is the degree of g and v is a unit. Thus

$$
g(x)=q(x) f(x)
$$

where $q(x)=x^{e-d} v w$ and w is the inverse of u. Thus we have a Euclidean Domain.
(vi) Follows from (v), as every Euclidean Domain is a UFD. Note though, that much more is true. The only prime element of $F \llbracket x \rrbracket$ is x and the factorisation of f above is given by $x^{d} u$.
10. (ii) Define $R \llbracket x_{1}, x_{2}, \ldots, x_{n} \rrbracket$ as for the polynomial ring, but erasing any mention of finiteness conditions, so that a general element of $R \llbracket x \rrbracket$ is of the form

$$
\sum a_{I} x^{I}
$$

where the sum ranges over all multi-indices. As before there is a canonical isomorphism,

$$
R \llbracket x_{1}, x_{2}, \ldots, x_{n} \rrbracket \simeq R \llbracket x_{1}, x_{2}, \ldots, x_{n-1} \rrbracket \llbracket x_{n} \rrbracket .
$$

The result then follows by a straightforward induction.

Challenge Problems:

10 (i) We follow the proof of Hilbert's Basis Theorem, although there are some twists to the story. Let $I \subset R \llbracket x \rrbracket$ be an ideal. Let $J \subset R$ be the set of leading coefficients (that is, the coefficients of the lowest non-zero term), union zero.
I claim that J is an ideal. It is non-empty as it contains 0 . If a and b are in J, then we may find $f(x)$ and $g(x)$ in I such that $f(x)$ has leading term $a x^{d}$ and $g(x)$ has leading term $b x^{e}$. Multiplying by an appropriate power of x, we may assume that $d=e$. As $f+g \in I$, it follows that $a+b \in J$. Similarly $r a \in J$. Thus J is an ideal. As R is Noetherian, we have

$$
J=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle,
$$

for some $a_{1}, a_{2}, \ldots, a_{k} \in J$. Pick $f_{i}(x) \in I$ with leading coefficient a_{i}. Let m be the maximum of the degrees of $f_{1}, f_{2}, \ldots, f_{k}$.
Note that there is a R-module homomorphism

$$
\pi: R \llbracket x \rrbracket \longrightarrow R[x]
$$

which sends a power series $p(x)$ to the polynomial of degree less than m, obtained by setting all of the coefficients of $p(x)$ of degree at least m to zero. The image M of π is the set of all polynomials of degree less than m. M is the R-submodule generated by $1, x, x^{2}, \ldots, x^{m-1}$. As R is Noetherian, M is Noetherian, as it is finitely generated. If N is the image of I then N is a submodule of M. Thus N is finitely generated. Pick generators and let $h_{1}, h_{2}, \ldots, h_{l}$ be the inverse image of these generators in $R \llbracket x \rrbracket$. Then $h_{1}, h_{2}, \ldots, h_{l}$ are power series of degrees at most $m-1$.
Now suppose that $p(x)$ is a power series. As $\pi(p(x))$ is a polynomial of degree at most $m-1$ belonging to N, it follows that we may write

$$
p(x)=p_{0}(x)+p_{1}(x),
$$

where $p_{0}(x)$ is a power series of degree less than m, a linear combination of $h_{1}, h_{2}, \ldots, h_{l}$ and $p_{1}(x)$ is a power series of degree at least m. It
suffices to prove that $p_{1}(x)$ is in the ideal generated by $f_{1}, f_{2}, \ldots, f_{k}$, since then $f_{1}, f_{2}, \ldots, f_{k}$ and $h_{1}, h_{2}, \ldots, h_{l}$ clearly generate I. Thus we may as well assume that $f(x)$ has degree at least m. We define a sequence of polynomials, $p_{1}^{(j)}(x), p_{2}^{(j)}(x), \ldots, p_{k}^{(j)}(x)$, such that if we put

$$
r^{(j)}(x)=f(x)-\sum_{i} p_{i}^{(j)}(x) f_{i}(x)
$$

then as we increase j, the degree of r goes up and the initial coefficients of $p_{i}^{(j)}(x)$, stabilise. Supposing that we can do this, taking the limit (in the obvious sense), then the polynomials become power series and the degree of r goes to infinity, which is the same as to say that in fact f is a linear combination of the $f_{1}, f_{2}, \ldots, f_{k}$. By induction on the degree, it suffices to increase the degree of r by one, that is, to kill the leading coefficient of f. Suppose that the leading coefficient of f is a. Then $a \in J$. Pick $r_{1}, r_{2}, \ldots, r_{k}$ such that

$$
a=\sum r_{i} a_{i}
$$

Then the coefficient of x^{d} for

$$
f(x)-\sum_{i} r_{i} x^{d-d_{i}} f_{i}(x)
$$

is zero by construction and we are done.
11. Let M_{n} be the kernel of ϕ^{n}. Note that we have an ascending chain,

$$
M_{1} \subset M_{2} \subset M_{3} \subset \ldots
$$

As M is Noetherian, this chain must stabilise, so that $M_{n}=M_{n+1}$ for some n. Now suppose that M_{1} is not trivial. We will define $m_{n} \in$ $M_{n}-M_{n-1}$ recursively, so that $\phi\left(m_{n}\right)=m_{n-1}$. This will obviously be a contradiction. By assumption, there is $m_{1} \in M_{1}$, such that $m_{1} \neq 0$. Suppose we have defined $m_{1}, m_{2}, \ldots, m_{n}$. As ϕ is surjective, there is an $m_{n+1} \in M$ such that $\phi\left(m_{n+1}\right)=m_{n}$. As $m_{n} \in M_{n}$, it is immediate that $m_{n+1} \in M_{n+1}$ but not in the smaller subset. This completes the construction and the contradiction.
Thus M_{1} is the trivial module and ϕ must be injective. In this case ϕ must be a bijection, whence an automorphism.

