
MODEL ANSWERS TO THE SIXTH HOMEWORK

1. Suppose that m and n are in M . Then

φ(m+ n) = r(m+ n)

= rm+ rn

= φ(m) + φ(n).

Thus φ is additive. Now suppose that s ∈ R. Then

φ(sm) = r(sm)

= (rs)m

= s(rm)

= sφ(m).

Thus φ is R-linear.
2. Let N be a submodule of M . Then N is an additive subgroup of M
and so it is non-empty and closed under addition. It is also closed under
multiplication by definition of the inherited rule for multiplication.
Now suppose that N is non-empty and closed under addition and scalar
multiplication. As N is non-empty and closed under addition, it follows
that it is an additive subgroup. The other axioms obviously hold in N ,
since they hold in the larger set M .
Thus N is a submodule.
3. Let K be the kernel of φ. As φ is a homomorphism of the underlying
additive groups, it follows that K is an additive subgroup. Suppose
that r ∈ R and k ∈ K. We have

φ(rk) = rφ(k)

= r · 0
= 0.

Thus rk ∈ K. It follows that K is closed under scalar multiplication.
Therefore K is a submodule.
4. Let Mi be a collection of submodules of an R-module M and let N
be their intersection. Then N is an additive subgroup as each Mi is
an additive subgroup. Suppose that r ∈ R and n ∈ N . Then for every
i ∈ I, n ∈ Mi. As Mi is an R-module, it follows that rn ∈ Mi. As
this is true for every i, in fact rn ∈ N . Thus N is closed under scalar
multiplication and so it is a submodule.
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5. Let Mi, i ∈ I be the set of all submodules of M that contain X.
Then N , the intersection of every Mi is a submodule of M , which
contains X. As N ⊂Mi it is clearly the smallest such submodule.
6. Let F be the set of all functions from X to M . We need to define
a rule of addition and scalar multiplication. Suppose that f and g are
elements of F . Define f + g as the pointwise sum, so that

(f + g)(x) = f(x) + g(x).

Similarly, given r ∈ R and f ∈ F , define rf as the pointwise product,

(rf)(x) = r(f(x)).

It is an easy matter to check that with this rule of addition and scalar
multiplication, F becomes an R-module.
7. Let H = HomR(M,N) be the set of all R-module homomorphisms.
Then H is a subset of F , the set of all functions from M to N . It
suffices to prove that H is non-empty and closed under addition and
scalar multiplication.
First note that the zero map, which sends every element of M to the
zero element of N , is R-linear. Thus H is certainly non-empty. Suppose
that f and g are elements of H. We need to prove that f+g is R-linear.
Let m and n be elements of M and r and s be elements of R. We have

(f + g)(rm+ sn) = f(rm+ sn) + g(rm+ sn)

= rf(m) + sf(n) + rg(m) + sg(n)

= rf(m) + rg(m) + sf(m) + sf(n)

= r(f + g)(m) + s(f + g)(n).

Thus f + g is indeed R-linear. It is equally easy and just as formal to
prove that rf is R-linear. Thus H is closed under addition and scalar
multiplication and so H is an R-module.
8. Since the arbitrary intersection of ideals is an ideal, it suffices to
prove that I is an ideal, in the case that X contains one point x.
Clearly 0 ∈ I. Thus I is non-empty. Suppose that i and j are elements
of I. Then

(i+ j)x = ix+ jx

= 0 + 0 = 0.
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Thus i + j ∈ I and I is closed under additition. Now suppose that
r ∈ R and i ∈ I. Then

ri(x) = r(ix)

= r0

= 0.

Thus ri ∈ I and I is an ideal. Here is another way to conclude that I
is an ideal. Let

φ : R −→ HomR(M,M)

be the natural map which sends an element R to the R-linear map,
m −→ rm. It is easy to see that φ is R-linear. Replacing M by the
module generated by X, note that an element r ∈ R is in I if and only
if φ(r) is the zero map. Thus I is the kernel of φ. It also follows that
I is also the annihilator of 〈X〉.
9. (i) Easy.
(ii) First we write down the inverse of 1−x. By a formal analogy with
geometric series, we guess the answer is

1 + x+ x2 + . . . .

We check this. We need to compute the product,

(1− x)(1 + x+ x2 + . . . ).

The constant term is clearly 1. In degree n, there are two terms, one
coming from xn from the second bracket and 1 from the first, which
gives coefficient 1, and the second one coming from xn−1 from the
second bracket and −x from the first, which gives coefficient −1. In
total we then have 0 = 1− 1.
In general, then, suppose that we have

f(x) = a+ bx+ . . . ,

where a is a unit in R. Multiplying through by the inverse of a, we
might as well assume that

f(x) = 1 + bx+ · · · = 1− y,

for some power series y. Now formally we guess that the inverse is

1 + y + y2 + . . . .

The only subtle thing to be careful of is that this involves an infinite
sum, which does not a priori make sense. On the other hand, note that
to compute the coefficient of xn, (after substituting for y) we only need
the first n+1 terms. Thus each coefficient can be computed using only
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finitely many terms and so the sum does make sense. With this said,
it is then clear that

(1 + y + y2 + . . . )(1− y) = 1,

for the same reasons as before. Thus the inverse of f is 1+y+y2 + . . . .
(iii) Easy. Suppose that

f(x) = axd + . . . and g(x) = bxd + . . .

for some a and b, where dots indicate higher terms. In this case

f(x)g(x) = abxd+e + . . .

and since R is an integral domain, ab 6= 0.
(iv) Immediate from (iii).
(v) Define a function

d : F JxK− {0} −→ N ∪ {0}

by sending a power series to its degree. We have to check two things.
The first follows immediately from (iii).
Now we have to check that if f(x) and g(x) are two power series, then
we may find q(x) and r(x) such that

g(x) = q(x)f(x) + r(x),

where either r(x) = 0 or the degree of r(x) is less than the degree of
f(x). There are two cases. If the degree of g(x) is less than the degree
of f(x) there is nothing to do; take q(x) = 0 and r(x) = g(x). In this
case the fact that r(x) has degree less than f(x) is clear.
Otherwise I claim that f(x) divides perfectly into g(x). To see this,
note that we have

f(x) = axd + . . .

= xd(a+ . . . )

= xdu.

Here as a 6= 0 and F is a field, a is a unit. Thus u is a unit. But then
by the same token, g(x) = xev, where e is the degree of g and v is a
unit. Thus

g(x) = q(x)f(x),

where q(x) = xe−dvw and w is the inverse of u. Thus we have a
Euclidean Domain.
(vi) Follows from (v), as every Euclidean Domain is a UFD. Note
though, that much more is true. The only prime element of F JxK
is x and the factorisation of f above is given by xdu.
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10. (ii) Define RJx1, x2, . . . , xnK as for the polynomial ring, but erasing
any mention of finiteness conditions, so that a general element of RJxK
is of the form ∑

aIx
I ,

where the sum ranges over all multi-indices. As before there is a canon-
ical isomorphism,

RJx1, x2, . . . , xnK ' RJx1, x2, . . . , xn−1KJxnK.

The result then follows by a straightforward induction.
Challenge Problems:
10 (i) We follow the proof of Hilbert’s Basis Theorem, although there
are some twists to the story. Let I ⊂ RJxK be an ideal. Let J ⊂ R
be the set of leading coefficients (that is, the coefficients of the lowest
non-zero term), union zero.
I claim that J is an ideal. It is non-empty as it contains 0. If a and
b are in J , then we may find f(x) and g(x) in I such that f(x) has
leading term axd and g(x) has leading term bxe. Multiplying by an
appropriate power of x, we may assume that d = e. As f + g ∈ I, it
follows that a+ b ∈ J . Similarly ra ∈ J . Thus J is an ideal.
As R is Noetherian, we have

J = 〈a1, a2, . . . , ak〉,
for some a1, a2, . . . , ak ∈ J . Pick fi(x) ∈ I with leading coefficient ai.
Let m be the maximum of the degrees of f1, f2, . . . , fk.
Note that there is a R-module homomorphism

π : RJxK −→ R[x],

which sends a power series p(x) to the polynomial of degree less than
m, obtained by setting all of the coefficients of p(x) of degree at least
m to zero. The image M of π is the set of all polynomials of degree
less than m. M is the R-submodule generated by 1, x, x2, . . . , xm−1.
As R is Noetherian, M is Noetherian, as it is finitely generated. If
N is the image of I then N is a submodule of M . Thus N is finitely
generated. Pick generators and let h1, h2, . . . , hl be the inverse image
of these generators in RJxK. Then h1, h2, . . . , hl are power series of
degrees at most m− 1.
Now suppose that p(x) is a power series. As π(p(x)) is a polynomial of
degree at most m− 1 belonging to N , it follows that we may write

p(x) = p0(x) + p1(x),

where p0(x) is a power series of degree less than m, a linear combination
of h1, h2, . . . , hl and p1(x) is a power series of degree at least m. It
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suffices to prove that p1(x) is in the ideal generated by f1, f2, . . . , fk,
since then f1, f2, . . . , fk and h1, h2, . . . , hl clearly generate I. Thus we
may as well assume that f(x) has degree at least m. We define a

sequence of polynomials, p
(j)
1 (x), p

(j)
2 (x), . . . , p

(j)
k (x), such that if we

put

r(j)(x) = f(x)−
∑
i

p
(j)
i (x)fi(x),

then as we increase j, the degree of r goes up and the initial coefficients

of p
(j)
i (x), stabilise. Supposing that we can do this, taking the limit (in

the obvious sense), then the polynomials become power series and the
degree of r goes to infinity, which is the same as to say that in fact f is
a linear combination of the f1, f2, . . . , fk. By induction on the degree,
it suffices to increase the degree of r by one, that is, to kill the leading
coefficient of f . Suppose that the leading coefficient of f is a. Then
a ∈ J . Pick r1, r2, . . . , rk such that

a =
∑

riai.

Then the coefficient of xd for

f(x)−
∑
i

rix
d−difi(x)

is zero by construction and we are done.
11. Let Mn be the kernel of φn. Note that we have an ascending chain,

M1 ⊂M2 ⊂M3 ⊂ . . . .

As M is Noetherian, this chain must stabilise, so that Mn = Mn+1 for
some n. Now suppose that M1 is not trivial. We will define mn ∈
Mn −Mn−1 recursively, so that φ(mn) = mn−1. This will obviously be
a contradiction. By assumption, there is m1 ∈ M1, such that m1 6= 0.
Suppose we have defined m1,m2, . . . ,mn. As φ is surjective, there is
an mn+1 ∈ M such that φ(mn+1) = mn. As mn ∈ Mn, it is immediate
that mn+1 ∈ Mn+1 but not in the smaller subset. This completes the
construction and the contradiction.
Thus M1 is the trivial module and φ must be injective. In this case φ
must be a bijection, whence an automorphism.
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