MODEL ANSWERS TO THE FIFTH HOMEWORK

10. We will repeatedly use the fact that if a polynomial of degree at most three is not irreducible, it must in fact have a root, as it must have a linear factor.
(a) $x^{2}+7$ cannot have a root over \mathbb{R} as $a^{2}+7 \geq 7$, for all $a \in \mathbb{R}$.
(b) This is slightly tricky. Probably the best way to proceed is as follows. Suppose that $a / b \in \mathbb{Q}$ is a root, where a and b are coprime integers. We have

$$
(a / b)^{3}-3(a / b)+3=0 .
$$

Multiplying through by b^{3} gives,

$$
a^{3}-3 a b^{2}+3 b^{3}=0
$$

Reducing modulo three, it follows that a is divisible by 3 . Thus $a=3 c$, some c. Substituting, we have

$$
(3 c)^{3}-3^{2} c b^{2}+3 b^{3}=0
$$

Cancelling one power of 3 , we have

$$
b^{3}-3 b^{2} c+9 c=0
$$

Reducing modulo three again, we have that b is divisible by three. But this contradicts the fact that a and b are chosen to be coprime.
(c) It suffices to observe that $0+0+1=1+1+1=1 \neq 0$.
(d) Note that we are asking if -1 is a square or not, in \mathbb{Z}_{19}. As $(-a)^{2}=a^{2}$, it suffices to consider $0 \leq a \leq 9$.

$$
\begin{array}{ccccc}
0^{2}=0 & 1^{2}=1 & 2^{2}=4 & 3^{2}=9 & 4^{2}=16 \\
5^{2}=25=6 & 6^{2}=36=-2 & 7^{2}=49=11 & 8^{2}=64=7 & 9^{2}=81=5
\end{array}
$$

Thus $x^{2}+1$ does not have a root and so it must be irreducible.
(e) Again it suffices to check that 9 is not a cube in \mathbb{Z}_{13}. As $(-a)^{3}=$ $-a^{3}$, it suffices to check that for $0 \leq a \leq 6, a^{3} \neq \pm 9=9,4$. We compute
$0^{3}=0, \quad 1^{3}=1, \quad 2^{3}=8, \quad 3^{3}=27=1 \quad 4^{3}=64=12 \quad 5^{3}=125=8 \quad 6^{3}=6 \cdot 10=8$.
(f) We first check that $x^{4}+2 x^{2}+2$ does not have any linear factors. This is equivalent to checking that it does not have any roots, which is clear as

$$
a^{4}+2 a^{2}+2 \geq 2
$$

for any real number a.

The only other possiblity to eliminate is that it is a product of quadratic factors. Suppose that

$$
x^{4}+2 x^{2}+2=f(x) g(x),
$$

where both f and g are quadratic. Moving the coefficient of x^{2} in f from f to g, we might as well assume that f is monic, that is, its top coefficient is 1 . In this case g is monic as well. Thus

$$
x^{4}+2 x^{2}+2=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right),
$$

where a, b, c and d are rational numbers. Comparing coefficients of x^{3}, we get

$$
a+c=0 .
$$

Renaming, we get

$$
x^{4}+2 x^{2}+2=\left(x^{2}+a x+b\right)\left(x^{2}-a x+c\right) .
$$

Looking at the coefficient of x, we get

$$
a c-a b=0 .
$$

Thus either $a=0$ or $b=c$. Suppose $a=0$. Replacing x^{2} by y, we get

$$
y^{2}+2 y+2=(y+a)(y+b),
$$

some a and b. In this case the polynomial $y^{2}+2 y+2$ would have a real root. But

$$
y^{2}+2 y+2=(y+1)^{2}+1
$$

so that if $a \in \mathbb{R}$, we have

$$
a^{2}+2 a+2=(a+1)^{2}+1 \geq 1>0
$$

The only remaining possibility is that $b=c$. In this case $b^{2}=2$, which is impossible, as b is a rational number.
13. Let

$$
\phi: \mathbb{R} \longrightarrow \mathbb{C}
$$

be the obvious inclusion. Applying the universal property of a polynomial ring, define a ring homomorphism

$$
\phi: \mathbb{R}[x] \longrightarrow \mathbb{C}
$$

by sending x to i. ϕ is obviously surjective as $\mathbb{R} \cup\{i\}$ generates \mathbb{C}. Let I be the kernel. This is an ideal in $\mathbb{R}[x]$. Therefore it must be principal. On the other hand $x^{2}+1$ is clearly in the kernel and $x^{2}+1$ is irreducible over \mathbb{R}, whence prime. It follows that $I=\left\langle x^{2}+1\right\rangle$, and that I is a prime ideal. By the Isomorphism Theorem, the result follows. 14. (a) To show that $x^{2}+1$ is irreducible, it suffices to check that -1 is not a square in F. We compute $a^{2}, 0 \leq a \leq 5$. We have

$$
0^{2}=0, \quad 1^{2}=1, \quad 2^{2}=4, \quad 3^{2}=9, \quad 4^{2}=16=5, \quad 5^{2}=25=3
$$

Thus $x^{2}+1$ is irreducible. As F is a field, $F[x]$ is a UFD. Thus $x^{2}+1$ is prime. Thus $I=\left\langle x^{2}+1\right\rangle$ is a prime ideal and so

$$
L=F[x] / I
$$

is an integral domain.
I claim that every element of L is represented uniquely by a polynomial of the form $a x+b$, where a and b are in F.
First suppose that we have a coset $g+I$. By the division algorithm, we may write

$$
g=q f+r
$$

where the degree of r is at most one and $f=p$. Thus $r=a x+b$, for some a and b and moreover $g+I=r+I$.
On the other hand if $a x+b+I=c x+d+I$, then $(a-c) x+(b-d) \in I$. As I is generated by a polynomial of degree two, the only non-zero elements of I have degree at least two. Thus $(a-c) x+b-d=0$, so that $a=c$ and $b=d$. The claim follows.
In this case L has $121=11^{2}$ elements. As L is finite, it is in fact a field and we are done.
(b) It suffices, repeating the argument above, to show that $x^{3}+x+4$ is irreducible. To prove this we show it does not have any roots. We compute

$$
\begin{array}{cc}
0^{3}+0+4=4 & 1^{3}+1+4=6 \\
2^{3}+2+4=3 & 3^{3}+3+4=1 \\
4^{3}+4+4=5 & 5^{3}+5+4=4 \\
6^{3}+6+4=-5^{3}-5+4=6 & 7^{3}+7+4=-4^{3}-4+4=2 \\
8^{3}+8+4=-3^{3}-3+4=4 & 9^{3}+9+4=-2^{3}-2+4=3 \\
10^{3}+10+4=-1^{3}-1+4=2 . &
\end{array}
$$

19. We simply have to construct an irreducible quadratic polynomial over \mathbb{F}_{p}. Consider $x^{2}-a$. This is irreducible if $x^{2}-a$ does not have a root. This is the same as to say that a is not a square.
There are p choices for a. The squares are of the form $b^{2}=(-b)^{2}$. As p is odd $b \neq-b$ and so there are $(p-1) / 2$ squares.
Thus $x^{2}-a$ is irreducible, for some choice of a. As $\mathbb{F}_{p}[x]$ is a UFD, it follows that $x^{2}-a$ is a prime. Thus

$$
\left\langle x^{2}-a\right\rangle
$$

is a prime ideal. The quotient is a field and it has p^{2} elements, since an element of the quotient is uniquely represented by a linear polynomial $a x+b$ and there are p^{2} choices for a and b.
2. Chapter $4, \S 6$. 1. The map $\phi: \mathbb{Q}[x] \longrightarrow \mathbb{Q}[x]$, defined by

$$
f(x) \longrightarrow_{3}^{\longrightarrow} f(x+1)
$$

is an automorphism of $\mathbb{Q}[x]$. On the other hand, any isomorphism $R \longrightarrow S$ clearly induces a correspondence between the irreducible elements of R and of S.
2. By Gauss' Lemma, it suffices to prove that $x^{3}-3 x+2$ is irreducible over \mathbb{Z}. Suppose not. Then it must factor as

$$
x^{3}+3 x-2=(x+a)\left(x^{2}+b x+c\right)
$$

where a, b and c are all integers. It follows that $a c=2$, so that a divides 2 . In this case, either ± 1 or ± 2 would be a root of $x^{3}-3 x+2$. We compute

$$
1^{3}+3-2=2 \quad(-1)^{3}-3-2=-6, \quad 2^{3}+6-2=12 \quad(-2)^{3}-6-2=-16 .
$$

3. By Gauss' Lemma it suffices to prove that $f(x)$ is irreducible over the integers. Let a be any integer which is divisible either by 3 and not by 9 , or divisible by 5 and not divisible by 25 . By Eisenstein's criterion, applied to $f(x)$ with $p=3$ or $p=5$ as appropriate, it follows that $f(x)$ is irreducible. On the other hand there are clearly infinitely many such choices of a.
6 . Let $\phi: R \longrightarrow S$ be any ring isomorphism. It is clear that $r \in R$ is irreducible if and only if $\phi(r)$ is irreducible.
7 and 8 . follow from 9.
4. By the universal property of a polynomial ring, there is a unique ring homomorphism

$$
\phi: F[x] \longrightarrow F[x]
$$

which sends x to $b x+c$. Thus it suffices to find the inverse map. Let

$$
\psi: F[x] \longrightarrow F[x]
$$

by the unique ring homomorphism which sends x to $(x-c) / b$. The composition sends x to x and by uniqueness the composition is therefore the identity. Thus ϕ is an automorphism.
10. By the uniqueness part of the universal property, it suffices to prove that the image of x has degree one, since if x is sent to $g(x)$, then $f(x)$ is sent to $f(g(x))$, which has degree the product of the degrees of f and g.
Suppose that ϕ is an automorphism of $F[x]$. Note that $F \cup\{x\}$ generates $F[x]$ as a ring. Thus $\phi(x)$ must have the same property. But if $g(x)$ is any element of $F[x]$ the ring generated by $g(x)$ and F is equal to the set of all polynomials of the form $f(g(x))$. Any such polynomial has degree the product of the degrees. Thus to get degree one polynomials, the degree of $g(x)$ must be one. Thus $\phi(x)$ must have degree one.
11. By 10, $\phi(x)$ has degree one. Thus $\phi(x)=b x+c$, where $b \neq 0$. It follows, by the universal property of a polynomial ring, that there is a unique ring homomorphism such that $\phi((f(x))=f(b x+c)$. We have already seen that any such ϕ is a ring automorphism.
12. Let $b=-1$ and $c=0$. Then $\phi(x)=-x$ is an automorphism of order two.
13. This has almost nothing to do with polynomials. Let R be any ring which contains a copy of the rationals $F_{0} \simeq \mathbb{Q}$. Note that F_{0} is generated by 1 as a field. Indeed since F_{0} contains a copy of the integers, R_{0}, it follows that R has characteristic zero. Let $\phi: R \longrightarrow R$ be any automorphism of R. Then $\phi(1)=1$, by definition. Since R_{0} is generated by $1, \phi$ acts as the identity on R_{0}. Since F_{0} is the field of fractions of R_{0}, it follows that ϕ acts on F_{0} as the identity (formally, by the universal property of the field of fractions).
14. Let ζ be a primitive nth root of unity. That is, pick $\zeta \in \mathbb{C}$ such that

$$
\zeta^{n}=1
$$

whilst no smaller power is equal to one. For example

$$
\zeta=e^{\frac{2 \pi i}{n}}
$$

will do. Let $\phi(x)=\zeta x$. Then $\phi(x)$ is an automorphism by 9 . Clearly ϕ^{n} is the identity, but if $m<n$, then ϕ^{m} is not, as $\phi^{m}(x)=\zeta^{m} x \neq x$. Thus ϕ is an automorphism of order n.
3. Chapter 5, §1. 3. (a) Let $f(y) \in T$. Then we may write

$$
f(y)=\sum_{k} b_{k} y^{k}
$$

where $b_{k} \in R[x]$. For each k we may write

$$
b_{k}=b_{k}(x)=\sum_{l} c_{l} x^{l}
$$

where $c_{l} \in R$.
Applying the distributive law, collecting together like terms and rearranging, it is clear we may expand f in the given form.
(b) Two elements of T are equal if and only if the coefficients of $x^{i} y^{j}$ are equal for all i and j.
(c) Add corresponding coefficients.
(d) Suppose that

$$
f(x, y)=\sum a_{i j} x^{i} y^{j} \quad \text { and } \quad g(x, y)=\sum b_{i j} x^{i} y^{j}
$$

Then

$$
f(x, y) g(x, y)=\sum c_{i j} x^{i} y^{j}
$$

where

$$
c_{i j}=\sum_{k, l} a_{k l} b_{i-k, j-l} .
$$

4. $D[x, y]$ is naturally isomorphic to $D[x][y]$. As D is an integral domain, it follows that $D[x]$ is an integral domain. But then $D[x][y]$ is also an integral domain.

Challenge Problems: (Just for fun)
4. Chapter $4 \S 523$. To show that $x^{3} \pm 2$ is irreducible, it suffices to check that $\pm 2=2,5$ is not a cube. It is enough to compute a^{3}, for $0 \leq a \leq 3$ and check we never get 2 or 5 :

$$
0^{3}=0 \quad 1^{3}=1 \quad 2^{3}=1 \quad \text { and } \quad 3^{3}=3 \cdot 2=6
$$

Thus both of $x^{3} \pm 2$ are irreducible. Define a map

$$
\phi: \mathbb{F}_{7}[x] \longrightarrow \mathbb{F}_{7}[x]
$$

by acting as the identity on \mathbb{F}_{7} and sending x to $-x$. By the universal property of a polynomial ring ϕ is in fact a ring homomorphism. Moreover ϕ is a bijection. Indeed it is own inverse. Thus ϕ is an automorphism.
It is clear that if ϕ is an automorphism of any ring R, I is an ideal of R and $J=\phi(I)$, then J is an ideal of R and

$$
R / I \simeq R / J
$$

Set $I=\left\langle x^{3}-2\right\rangle$. Then $J=\left\langle x^{3}+2\right\rangle$ and the result follows.
24. Let

$$
\phi: \mathbb{Q}[x] \longrightarrow \mathbb{C}
$$

be the ring homomorphism, obtained from the universal property of a polynomial ring, where we send x to α and include \mathbb{Q} into \mathbb{C}. In this case, the image of ϕ is the set

$$
\{a+b \alpha \mid a, b \in \mathbb{Q}\} .
$$

Note that $\alpha^{2}=-\alpha-1$, so that this set is indeed closed under multiplication. Now the polynomial $x^{2}+x+1$ has no roots over \mathbb{Q}. Thus it is irreducible. It follows that the ideal $\left\langle x^{2}+x+1\right\rangle$ is prime and that it is the kernel of ϕ. As we are in a PID it is therefore maximal. Thus the quotient is a field and we are done by the Isomorphism Theorem. We write down the inverse of $a+b \alpha$ by hand. In the end, probably the easiest thing is to use the trick of changing variables. Consider the polynomial

$$
x^{2}+x+1
$$

If we complete the square, we get

$$
(x+1 / 2)^{2}+3 / 4
$$

Changing variable, we set $y=x+1 / 2$. Consider the polynomial

$$
y^{2}+3 / 4=0 .
$$

Let β be a root of this polynomial. Possibly switching signs, we have $\alpha=\beta+1 / 2$. Thus anything of the form $a+b \alpha$ is also of the form $a+b \beta$ (different a and b of course). The inverse of $a+b \beta$ is easy to compute. Replace this by its conjugate

$$
a-b \beta .
$$

Then

$$
(a-b \beta)(a+b \beta)=a^{2}+b^{2}(3 / 4)=n
$$

So the inverse of

$$
a+b \beta
$$

is

$$
\frac{1}{n}(a-b \beta)
$$

25. I don't see how to do this without using some of the results from the next section.
26. (a) If a is its own inverse then $a^{2}=1$ so that $a^{2}-1=0$. Thus a is a root of the polynomial $x^{2}-1$. A polynomial of degree 2 has at most two roots. 1 and -1 are roots, so the only elements of \mathbb{F}_{p} which are their own inverses are ± 1.
(b) $(p-1)$! is the product of every non-zero element of \mathbb{F}_{p}. If we pair off an element and its inverse then we simply get one. The only elements that are left are then 1 and -1 , so that the product is -1 .
(c) Let

$$
L=\prod_{a=1}^{(p-1) / 2} a \quad \text { and } \quad U=\prod_{a=(p+1) / 2}^{p-1}
$$

By part (b)

$$
L \cdot U=(p-1)!=-1
$$

Consider the function

$$
f: \mathbb{F}_{p} \longrightarrow \mathbb{F}_{p} \quad \text { given by } \quad a \longrightarrow p-a
$$

If we apply f to every term in L we get every term in U. It follows that

$$
U=(-1)^{p-1 / 2} L=L
$$

as $(p-1) / 2$ is even. Thus

$$
L^{2}=L \cdot U=-1
$$

(d) Let

$$
m=\left(\frac{p-1}{2}\right)^{2}
$$

Then $m^{2}+1$ is divisible by p.
(e)

$$
m^{2}+1=(m+i)(m-i) .
$$

p divides the LHS but it does not divide either $m+i$ or $m-i$. Thus p is not prime.
(f) Let $a+b i$ be a non-trivial prime factor of p. Then $a-b i$ is another prime factor of p. In this case

$$
a^{2}+b^{2}=N(a)
$$

is a divisor of p^{2}. The only divisors of p^{2} are $1, p$ and p^{2}. It cannot be 1 and so it cannot be p^{2}. It follows that

$$
a^{2}+b^{2}=p
$$

