MODEL ANSWERS TO THE FIFTH HOMEWORK

10. We will repeatedly use the fact that if a polynomial of degree at
most three is not irreducible, it must in fact have a root, as it must
have a linear factor.
(a) 22 + 7 cannot have a root over R as a? +7 > 7, for all a € R.
(b) This is slightly tricky. Probably the best way to proceed is as
follows. Suppose that a/b € Q is a root, where a and b are coprime
integers. We have

(a/b)* — 3(a/b) + 3 = 0.
Multiplying through by b3 gives,

a® — 3ab® + 3b° = 0.

Reducing modulo three, it follows that a is divisible by 3. Thus a = 3¢,
some c. Substituting, we have

(3c)* — 3%ch* + 3b* = 0.
Cancelling one power of 3, we have
b* — 3b%c+ 9c = 0.

Reducing modulo three again, we have that b is divisible by three. But
this contradicts the fact that a and b are chosen to be coprime.

(c) It suffices to observe that 0+0+1=1+1+1=1#0.

(d) Note that we are asking if —1 is a square or not, in Zje. As
(—a)? = a?, it suffices to consider 0 < a < 9.

0°=0 12=1 22 =4 32 =9 42 =16
5 =25=6 62=36=—-2 7?=49=11 8 =64=7 92=81=5.
Thus 22 + 1 does not have a root and so it must be irreducible.

(e) Again it suffices to check that 9 is not a cube in Z3. As (—a)® =
—a?, it suffices to check that for 0 < a < 6, a® # +9 = 9,4. We

compute
=0 1>=1, 22=8, 3F=27=1 42=64=12 5 =125=38

(f) We first check that z* + 222 + 2 does not have any linear factors.
This is equivalent to checking that it does not have any roots, which is
clear as

at+2a>+2>2

for any real number a.

63 = 6-10 = 8.



The only other possiblity to eliminate is that it is a product of quadratic
factors. Suppose that
ot +22° + 2 = f(x)g(x),

where both f and g are quadratic. Moving the coefficient of 2% in f
from f to g, we might as well assume that f is monic, that is, its top
coefficient is 1. In this case g is monic as well. Thus

2t +22% + 2 = (2 + az + b)(2® + cx + d),
where a, b, ¢ and d are rational numbers. Comparing coefficients of 3,
we get
a+c=0.
Renaming, we get

a4+ 22 + 2 = (2% + az + b)(2® — ax + ¢).
Looking at the coefficient of x, we get
ac —ab = 0.
Thus either a = 0 or b = ¢. Suppose a = 0. Replacing 2% by y, we get
v +2y+2=(y+a)y+b),

some a and b. In this case the polynomial y? + 2y + 2 would have a
real root. But

VY H2y+2=(y+1)7°+1
so that if a € R, we have

A +2a+2=(a+1)2+1>1>0.

The only remaining possibility is that b = ¢. In this case b*> = 2, which
is impossible, as b is a rational number.
13. Let

p:R— C
be the obvious inclusion. Applying the universal property of a polyno-
mial ring, define a ring homomorphism

¢: Rjz] — C

by sending x to i. ¢ is obviously surjective as R U {i} generates C.
Let I be the kernel. This is an ideal in R[z]. Therefore it must be
principal. On the other hand 2% +1 is clearly in the kernel and x?+1 is
irreducible over R, whence prime. It follows that I = (z?+1), and that
I is a prime ideal. By the Isomorphism Theorem, the result follows.
14. (a) To show that 2 4 1 is irreducible, it suffices to check that —1
is not a square in F. We compute a?, 0 < a < 5. We have

0>=0, 1°=1, 2°=4, 3*=9, 4=16=5 5 =25=3.
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Thus 2% + 1 is irreducible. As F is a field, F[z] is a UFD. Thus z* + 1
is prime. Thus I = (z? + 1) is a prime ideal and so

L= Fla)/I,

is an integral domain.
I claim that every element of L is represented uniquely by a polynomial
of the form ax + b, where a and b are in F.
First suppose that we have a coset g + I. By the division algorithm,
we may write

g=qf +r,
where the degree of r is at most one and f = p. Thus r = ax + b, for
some a and b and moreover g + [ =1r + 1.
On the other hand if ax +b+1 = cx+d~+1, then (a—c)x+(b—d) € I.
As I is generated by a polynomial of degree two, the only non-zero
elements of I have degree at least two. Thus (a —c¢)x +b—d =0, so
that a = ¢ and b = d. The claim follows.
In this case L has 121 = 11? elements. As L is finite, it is in fact a field
and we are done.
(b) Tt suffices, repeating the argument above, to show that 2> + z + 4
is irreducible. To prove this we show it does not have any roots. We
compute

0B+0+4=4 12+14+4=6
24+244=23 B +34+4=1
234+44+44=5 Bih4+4=14

6°+6+4=-5—-54+4=6 T +T7+4=—-4>—-44+4=2
B 4+8+44=-3"-34+4=4 9P 4+944=-22_924+4=13
100 4+104+4=—-13—-14+4=2.

19. We simply have to construct an irreducible quadratic polynomial
over F,. Consider x? — a. This is irreducible if 2 — a does not have a
root. This is the same as to say that a is not a square.

There are p choices for a. The squares are of the form §? = (—b)?. As
pis odd b # —b and so there are (p — 1)/2 squares.

Thus 22 — a is irreducible, for some choice of a. As F,[z] is a UFD, it
follows that 2> — a is a prime. Thus

(@* —a)

is a prime ideal. The quotient is a field and it has p? elements, since an
element of the quotient is uniquely represented by a linear polynomial
ax + b and there are p? choices for a and b.

2. Chapter 4, §6. 1. The map ¢: Q[z] — Q[z], defined by

f(z) —>3f(1‘ +1)



is an automorphism of Q[z]. On the other hand, any isomorphism
R — S clearly induces a correspondence between the irreducible ele-
ments of R and of S.

2. By Gauss’ Lemma, it suffices to prove that 23 — 3z 4 2 is irreducible
over Z. Suppose not. Then it must factor as

2* 432 — 2= (z + a)(z® + bx + ¢),

where a, b and ¢ are all integers. It follows that ac = 2, so that a
divides 2. In this case, either 1 or +2 would be a root of z* — 3z + 2.
We compute

1P43-2=2 (=1)°-3-2=—-6, 2°4+6-2=12 (—2)*-6-2=—16.

3. By Gauss’ Lemma it suffices to prove that f(z) is irreducible over
the integers. Let a be any integer which is divisible either by 3 and
not by 9, or divisible by 5 and not divisible by 25. By Eisenstein’s
criterion, applied to f(z) with p = 3 or p = 5 as appropriate, it follows
that f(z) is irreducible. On the other hand there are clearly infinitely
many such choices of a.

6. Let ¢: R — S be any ring isomorphism. It is clear that » € R is
irreducible if and only if ¢(r) is irreducible.

7 and 8. follow from 9.

9. By the universal property of a polynomial ring, there is a unique
ring homomorphism

¢: Flx] — F[z]
which sends x to bz + c¢. Thus it suffices to find the inverse map. Let
Y Flz] — Flx]

by the unique ring homomorphism which sends x to (z — ¢)/b. The
composition sends x to x and by uniqueness the composition is therefore
the identity. Thus ¢ is an automorphism.

10. By the uniqueness part of the universal property, it suffices to prove
that the image of = has degree one, since if  is sent to g(x), then f(z)
is sent to f(g(z)), which has degree the product of the degrees of f
and g.

Suppose that ¢ is an automorphism of F[z]. Note that F U {z} gen-
erates F'[x] as a ring. Thus ¢(z) must have the same property. But if
g(x) is any element of F[z]| the ring generated by g(x) and F is equal
to the set of all polynomials of the form f(g(z)). Any such polynomial
has degree the product of the degrees. Thus to get degree one poly-
nomials, the degree of g(z) must be one. Thus ¢(z) must have degree

one.
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11. By 10, ¢(x) has degree one. Thus ¢(x) = bx + ¢, where b # 0. It
follows, by the universal property of a polynomial ring, that there is a
unique ring homomorphism such that ¢((f(x)) = f(bxz + ¢). We have
already seen that any such ¢ is a ring automorphism.
12. Let b = —1 and ¢ = 0. Then ¢(z) = —x is an automorphism of
order two.
13. This has almost nothing to do with polynomials. Let R be any
ring which contains a copy of the rationals Fy ~ Q. Note that Fj
is generated by 1 as a field. Indeed since F{ contains a copy of the
integers, Ry, it follows that R has characteristic zero. Let ¢: R — R
be any automorphism of R. Then ¢(1) = 1, by definition. Since Ry is
generated by 1, ¢ acts as the identity on Ry. Since Fj is the field of
fractions of Ry, it follows that ¢ acts on F as the identity (formally,
by the universal property of the field of fractions).
14. Let ¢ be a primitive nth root of unity. That is, pick ¢ € C such
that

=1
whilst no smaller power is equal to one. For example

(=en
will do. Let ¢(x) = (x. Then ¢(x) is an automorphism by 9. Clearly
¢™ is the identity, but if m < n, then ¢™ is not, as ¢"(z) = ("z # z.
Thus ¢ is an automorphism of order n.
3. Chapter 5, §1. 3. (a) Let f(y) € T. Then we may write

fly) = by

where b, € R[x]. For each k& we may write

bk = bk(l‘) = chl‘l,
!

where ¢; € R.
Applying the distributive law, collecting together like terms and rear-
ranging, it is clear we may expand f in the given form.
(b) Two elements of T' are equal if and only if the coefficients of x'y’
are equal for all ¢ and j.
(¢) Add corresponding coefficients.
(d) Suppose that

floy) =) aga'y  and  glx,y) = bya'y’,
Then -
fle,y)gle,y) =) ey,
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where

Cij = E aklbifk,jfk
k,l

4. Dlz,y] is naturally isomorphic to D[z][y]. As D is an integral
domain, it follows that D[x] is an integral domain. But then D[z|[y] is
also an integral domain.

Challenge Problems: (Just for fun)

4. Chapter 4 §5 23. To show that x® & 2 is irreducible, it suffices to
check that 2 = 2,5 is not a cube. It is enough to compute a3, for
0 < a < 3 and check we never get 2 or 5:

=0 1"=1 2°=1 and 3 =3-2=6.
Thus both of 22 4+ 2 are irreducible. Define a map
¢: Frlx] — Frlx]

by acting as the identity on F; and sending x to —z. By the univer-
sal property of a polynomial ring ¢ is in fact a ring homomorphism.
Moreover ¢ is a bijection. Indeed it is own inverse. Thus ¢ is an
automorphism.

It is clear that if ¢ is an automorphism of any ring R, [ is an ideal of
R and J = ¢(I), then J is an ideal of R and

R/I ~R/J.

Set I = (x3 —2). Then J = (2 + 2) and the result follows.
24. Let

¢: Q] — C
be the ring homomorphism, obtained from the universal property of a

polynomial ring, where we send x to a and include @ into C. In this
case, the image of ¢ is the set

{a+bala,beQ}.

Note that a?> = —a — 1, so that this set is indeed closed under multi-
plication. Now the polynomial 2% + 2 + 1 has no roots over Q. Thus it
is irreducible. Tt follows that the ideal (z? + x + 1) is prime and that
it is the kernel of ¢. As we are in a PID it is therefore maximal. Thus
the quotient is a field and we are done by the Isomorphism Theorem.
We write down the inverse of a + ba by hand. In the end, probably
the easiest thing is to use the trick of changing variables. Consider the
polynomial

224+ 1.
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If we complete the square, we get
(z+1/2)* +3/4.
Changing variable, we set y = x 4+ 1/2. Consider the polynomial
Y +3/4=0.
Let § be a root of this polynomial. Possibly switching signs, we have
a = f+ 1/2. Thus anything of the form a + ba is also of the form

a + bp (different a and b of course). The inverse of a + b is easy to
compute. Replace this by its conjugate

a—bp.

Then
(a —bB)(a+bB) =a* +b*(3/4) =n
So the inverse of
a—+bp
is )
—(a—2bf).
25. I don’t see how to do this without using some of the results from
the next section.
5. (a) If a is its own inverse then a® = 1 so that a®> — 1 = 0. Thus a is
a root of the polynomial 22 — 1. A polynomial of degree 2 has at most
two roots. 1 and —1 are roots, so the only elements of F, which are
their own inverses are +1.
(b) (p—1)!is the product of every non-zero element of F,. If we pair off
an element and its inverse then we simply get one. The only elements
that are left are then 1 and —1, so that the product is —1.
(c) Let

(p—1)/2 p—1
L= H a and U= H
a=1 a=(p+1)/2

By part (b)

L-U=@{p-1=-1.
Consider the function

f:F, —TF, given by a—p—a

If we apply f to every term in L we get every term in U. It follows
that

U= (-1)""?L =1,
as (p — 1)/2 is even. Thus

I’=L-U=-1.
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(d) Let

_(p—1Y
m=|= .
Then m? + 1 is divisible by p.

(e)

m?+1=(m+i)(m—1i).
p divides the LHS but it does not divide either m + ¢ or m — i. Thus
p is not prime.
(f) Let a + bi be a non-trivial prime factor of p. Then a — bi is another
prime factor of p. In this case

a’ 4 b* = N(a)

is a divisor of p?. The only divisors of p? are 1, p and p?. It cannot be
1 and so it cannot be p?. It follows that

a® +b* =p.



