
MODEL ANSWERS TO THE FIFTH HOMEWORK

10. We will repeatedly use the fact that if a polynomial of degree at
most three is not irreducible, it must in fact have a root, as it must
have a linear factor.
(a) x2 + 7 cannot have a root over R as a2 + 7 ≥ 7, for all a ∈ R.
(b) This is slightly tricky. Probably the best way to proceed is as
follows. Suppose that a/b ∈ Q is a root, where a and b are coprime
integers. We have

(a/b)3 − 3(a/b) + 3 = 0.

Multiplying through by b3 gives,

a3 − 3ab2 + 3b3 = 0.

Reducing modulo three, it follows that a is divisible by 3. Thus a = 3c,
some c. Substituting, we have

(3c)3 − 32cb2 + 3b3 = 0.

Cancelling one power of 3, we have

b3 − 3b2c+ 9c = 0.

Reducing modulo three again, we have that b is divisible by three. But
this contradicts the fact that a and b are chosen to be coprime.
(c) It suffices to observe that 0 + 0 + 1 = 1 + 1 + 1 = 1 6= 0.
(d) Note that we are asking if −1 is a square or not, in Z19. As
(−a)2 = a2, it suffices to consider 0 ≤ a ≤ 9.

02 = 0 12 = 1 22 = 4 32 = 9 42 = 16
52 = 25 = 6 62 = 36 = −2 72 = 49 = 11 82 = 64 = 7 92 = 81 = 5.

Thus x2 + 1 does not have a root and so it must be irreducible.
(e) Again it suffices to check that 9 is not a cube in Z13. As (−a)3 =
−a3, it suffices to check that for 0 ≤ a ≤ 6, a3 6= ±9 = 9, 4. We
compute

03 = 0, 13 = 1, 23 = 8, 33 = 27 = 1 43 = 64 = 12 53 = 125 = 8 63 = 6·10 = 8.

(f) We first check that x4 + 2x2 + 2 does not have any linear factors.
This is equivalent to checking that it does not have any roots, which is
clear as

a4 + 2a2 + 2 ≥ 2

for any real number a.
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The only other possiblity to eliminate is that it is a product of quadratic
factors. Suppose that

x4 + 2x2 + 2 = f(x)g(x),

where both f and g are quadratic. Moving the coefficient of x2 in f
from f to g, we might as well assume that f is monic, that is, its top
coefficient is 1. In this case g is monic as well. Thus

x4 + 2x2 + 2 = (x2 + ax+ b)(x2 + cx+ d),

where a, b, c and d are rational numbers. Comparing coefficients of x3,
we get

a+ c = 0.

Renaming, we get

x4 + 2x2 + 2 = (x2 + ax+ b)(x2 − ax+ c).

Looking at the coefficient of x, we get

ac− ab = 0.

Thus either a = 0 or b = c. Suppose a = 0. Replacing x2 by y, we get

y2 + 2y + 2 = (y + a)(y + b),

some a and b. In this case the polynomial y2 + 2y + 2 would have a
real root. But

y2 + 2y + 2 = (y + 1)2 + 1

so that if a ∈ R, we have

a2 + 2a+ 2 = (a+ 1)2 + 1 ≥ 1 > 0.

The only remaining possibility is that b = c. In this case b2 = 2, which
is impossible, as b is a rational number.
13. Let

φ : R −→ C
be the obvious inclusion. Applying the universal property of a polyno-
mial ring, define a ring homomorphism

φ : R[x] −→ C
by sending x to i. φ is obviously surjective as R ∪ {i} generates C.
Let I be the kernel. This is an ideal in R[x]. Therefore it must be
principal. On the other hand x2 +1 is clearly in the kernel and x2 +1 is
irreducible over R, whence prime. It follows that I = 〈x2+1〉, and that
I is a prime ideal. By the Isomorphism Theorem, the result follows.
14. (a) To show that x2 + 1 is irreducible, it suffices to check that −1
is not a square in F . We compute a2, 0 ≤ a ≤ 5. We have

02 = 0, 12 = 1, 22 = 4, 32 = 9, 42 = 16 = 5, 52 = 25 = 3.
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Thus x2 + 1 is irreducible. As F is a field, F [x] is a UFD. Thus x2 + 1
is prime. Thus I = 〈x2 + 1〉 is a prime ideal and so

L = F [x]/I,

is an integral domain.
I claim that every element of L is represented uniquely by a polynomial
of the form ax+ b, where a and b are in F .
First suppose that we have a coset g + I. By the division algorithm,
we may write

g = qf + r,

where the degree of r is at most one and f = p. Thus r = ax + b, for
some a and b and moreover g + I = r + I.
On the other hand if ax+b+I = cx+d+I, then (a−c)x+(b−d) ∈ I.
As I is generated by a polynomial of degree two, the only non-zero
elements of I have degree at least two. Thus (a − c)x + b − d = 0, so
that a = c and b = d. The claim follows.
In this case L has 121 = 112 elements. As L is finite, it is in fact a field
and we are done.
(b) It suffices, repeating the argument above, to show that x3 + x + 4
is irreducible. To prove this we show it does not have any roots. We
compute

03 + 0 + 4 = 4 13 + 1 + 4 = 6
23 + 2 + 4 = 3 33 + 3 + 4 = 1
43 + 4 + 4 = 5 53 + 5 + 4 = 4

63 + 6 + 4 = −53 − 5 + 4 = 6 73 + 7 + 4 = −43 − 4 + 4 = 2
83 + 8 + 4 = −33 − 3 + 4 = 4 93 + 9 + 4 = −23 − 2 + 4 = 3

103 + 10 + 4 = −13 − 1 + 4 = 2.

19. We simply have to construct an irreducible quadratic polynomial
over Fp. Consider x2 − a. This is irreducible if x2 − a does not have a
root. This is the same as to say that a is not a square.
There are p choices for a. The squares are of the form b2 = (−b)2. As
p is odd b 6= −b and so there are (p− 1)/2 squares.
Thus x2 − a is irreducible, for some choice of a. As Fp[x] is a UFD, it
follows that x2 − a is a prime. Thus

〈x2 − a〉
is a prime ideal. The quotient is a field and it has p2 elements, since an
element of the quotient is uniquely represented by a linear polynomial
ax+ b and there are p2 choices for a and b.
2. Chapter 4, §6. 1. The map φ : Q[x] −→ Q[x], defined by

f(x) −→ f(x+ 1)
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is an automorphism of Q[x]. On the other hand, any isomorphism
R −→ S clearly induces a correspondence between the irreducible ele-
ments of R and of S.
2. By Gauss’ Lemma, it suffices to prove that x3−3x+ 2 is irreducible
over Z. Suppose not. Then it must factor as

x3 + 3x− 2 = (x+ a)(x2 + bx+ c),

where a, b and c are all integers. It follows that ac = 2, so that a
divides 2. In this case, either ±1 or ±2 would be a root of x3− 3x+ 2.
We compute

13+3−2 = 2 (−1)3−3−2 = −6, 23+6−2 = 12 (−2)3−6−2 = −16.

3. By Gauss’ Lemma it suffices to prove that f(x) is irreducible over
the integers. Let a be any integer which is divisible either by 3 and
not by 9, or divisible by 5 and not divisible by 25. By Eisenstein’s
criterion, applied to f(x) with p = 3 or p = 5 as appropriate, it follows
that f(x) is irreducible. On the other hand there are clearly infinitely
many such choices of a.
6. Let φ : R −→ S be any ring isomorphism. It is clear that r ∈ R is
irreducible if and only if φ(r) is irreducible.
7 and 8. follow from 9.
9. By the universal property of a polynomial ring, there is a unique
ring homomorphism

φ : F [x] −→ F [x]

which sends x to bx+ c. Thus it suffices to find the inverse map. Let

ψ : F [x] −→ F [x]

by the unique ring homomorphism which sends x to (x − c)/b. The
composition sends x to x and by uniqueness the composition is therefore
the identity. Thus φ is an automorphism.
10. By the uniqueness part of the universal property, it suffices to prove
that the image of x has degree one, since if x is sent to g(x), then f(x)
is sent to f(g(x)), which has degree the product of the degrees of f
and g.
Suppose that φ is an automorphism of F [x]. Note that F ∪ {x} gen-
erates F [x] as a ring. Thus φ(x) must have the same property. But if
g(x) is any element of F [x] the ring generated by g(x) and F is equal
to the set of all polynomials of the form f(g(x)). Any such polynomial
has degree the product of the degrees. Thus to get degree one poly-
nomials, the degree of g(x) must be one. Thus φ(x) must have degree
one.
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11. By 10, φ(x) has degree one. Thus φ(x) = bx + c, where b 6= 0. It
follows, by the universal property of a polynomial ring, that there is a
unique ring homomorphism such that φ((f(x)) = f(bx + c). We have
already seen that any such φ is a ring automorphism.
12. Let b = −1 and c = 0. Then φ(x) = −x is an automorphism of
order two.
13. This has almost nothing to do with polynomials. Let R be any
ring which contains a copy of the rationals F0 ' Q. Note that F0

is generated by 1 as a field. Indeed since F0 contains a copy of the
integers, R0, it follows that R has characteristic zero. Let φ : R −→ R
be any automorphism of R. Then φ(1) = 1, by definition. Since R0 is
generated by 1, φ acts as the identity on R0. Since F0 is the field of
fractions of R0, it follows that φ acts on F0 as the identity (formally,
by the universal property of the field of fractions).
14. Let ζ be a primitive nth root of unity. That is, pick ζ ∈ C such
that

ζn = 1,

whilst no smaller power is equal to one. For example

ζ = e
2πi
n

will do. Let φ(x) = ζx. Then φ(x) is an automorphism by 9. Clearly
φn is the identity, but if m < n, then φm is not, as φm(x) = ζmx 6= x.
Thus φ is an automorphism of order n.
3. Chapter 5, §1. 3. (a) Let f(y) ∈ T . Then we may write

f(y) =
∑
k

bky
k

where bk ∈ R[x]. For each k we may write

bk = bk(x) =
∑
l

clx
l,

where cl ∈ R.
Applying the distributive law, collecting together like terms and rear-
ranging, it is clear we may expand f in the given form.
(b) Two elements of T are equal if and only if the coefficients of xiyj

are equal for all i and j.
(c) Add corresponding coefficients.
(d) Suppose that

f(x, y) =
∑

aijx
iyj and g(x, y) =

∑
bijx

iyj.

Then
f(x, y)g(x, y) =

∑
cijx

iyj,
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where

cij =
∑
k,l

aklbi−k,j−l.

4. D[x, y] is naturally isomorphic to D[x][y]. As D is an integral
domain, it follows that D[x] is an integral domain. But then D[x][y] is
also an integral domain.

Challenge Problems: (Just for fun)

4. Chapter 4 §5 23. To show that x3 ± 2 is irreducible, it suffices to
check that ±2 = 2, 5 is not a cube. It is enough to compute a3, for
0 ≤ a ≤ 3 and check we never get 2 or 5:

03 = 0 13 = 1 23 = 1 and 33 = 3 · 2 = 6.

Thus both of x3 ± 2 are irreducible. Define a map

φ : F7[x] −→ F7[x]

by acting as the identity on F7 and sending x to −x. By the univer-
sal property of a polynomial ring φ is in fact a ring homomorphism.
Moreover φ is a bijection. Indeed it is own inverse. Thus φ is an
automorphism.
It is clear that if φ is an automorphism of any ring R, I is an ideal of
R and J = φ(I), then J is an ideal of R and

R/I ' R/J.

Set I = 〈x3 − 2〉. Then J = 〈x3 + 2〉 and the result follows.
24. Let

φ : Q[x] −→ C
be the ring homomorphism, obtained from the universal property of a
polynomial ring, where we send x to α and include Q into C. In this
case, the image of φ is the set

{ a+ bα | a, b ∈ Q }.
Note that α2 = −α − 1, so that this set is indeed closed under multi-
plication. Now the polynomial x2 + x+ 1 has no roots over Q. Thus it
is irreducible. It follows that the ideal 〈x2 + x + 1〉 is prime and that
it is the kernel of φ. As we are in a PID it is therefore maximal. Thus
the quotient is a field and we are done by the Isomorphism Theorem.
We write down the inverse of a + bα by hand. In the end, probably
the easiest thing is to use the trick of changing variables. Consider the
polynomial

x2 + x+ 1.
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If we complete the square, we get

(x+ 1/2)2 + 3/4.

Changing variable, we set y = x+ 1/2. Consider the polynomial

y2 + 3/4 = 0.

Let β be a root of this polynomial. Possibly switching signs, we have
α = β + 1/2. Thus anything of the form a + bα is also of the form
a + bβ (different a and b of course). The inverse of a + bβ is easy to
compute. Replace this by its conjugate

a− bβ.
Then

(a− bβ)(a+ bβ) = a2 + b2(3/4) = n

So the inverse of
a+ bβ

is
1

n
(a− bβ).

25. I don’t see how to do this without using some of the results from
the next section.
5. (a) If a is its own inverse then a2 = 1 so that a2 − 1 = 0. Thus a is
a root of the polynomial x2− 1. A polynomial of degree 2 has at most
two roots. 1 and −1 are roots, so the only elements of Fp which are
their own inverses are ±1.
(b) (p−1)! is the product of every non-zero element of Fp. If we pair off
an element and its inverse then we simply get one. The only elements
that are left are then 1 and −1, so that the product is −1.
(c) Let

L =

(p−1)/2∏
a=1

a and U =

p−1∏
a=(p+1)/2

.

By part (b)
L · U = (p− 1)! = −1.

Consider the function

f : Fp −→ Fp given by a −→ p− a
If we apply f to every term in L we get every term in U . It follows
that

U = (−1)p−1/2L = L,

as (p− 1)/2 is even. Thus

L2 = L · U = −1.
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(d) Let

m =

(
p− 1

2

)2

.

Then m2 + 1 is divisible by p.
(e)

m2 + 1 = (m+ i)(m− i).
p divides the LHS but it does not divide either m + i or m − i. Thus
p is not prime.
(f) Let a+ bi be a non-trivial prime factor of p. Then a− bi is another
prime factor of p. In this case

a2 + b2 = N(a)

is a divisor of p2. The only divisors of p2 are 1, p and p2. It cannot be
1 and so it cannot be p2. It follows that

a2 + b2 = p.
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