MODEL ANSWERS TO THE FOURTH HOMEWORK

1. As d divides a and b, by the universal property of d, d'|d. By
symmetry d divides d’. But then d and d’ are associates.
2. (a) As R is a UFD, we may factor a and b as

_ mi,. Mo mp _ ni,n2 g
a=upy"py” - py and b =wp"ps* - pit,
where p1,po,...,py are primes, mq,ms,...,my and nq,ng,...,N; are

natural numbers, possibly zero, and v and v are units. Define

m = p(lnpgz . ,pzk
where o; is the maximum of m; and n;. It follows easily that a|m and
blm.

Now suppose that a|m’ and b|m’. Then, possibly enlarging our list of
primes, we may assume that

m' = wpi'py - P,

where w is a unit and 71,79, ..., 7 are positive integers. As a|m/, r; >
m;. Similarly as b|m/, r; > n;. It follows that r; > 0; = max(m;, n;).
Thus m is indeed an lecm of @ and b. Uniqueness of lems’ up to asso-
ciates, follows as in the proof of uniqueness of ged’s.

(b) It suffices to prove this result for one choice of ged d and one choice
of lem m. Pick d as in class (that is, take the minimum exponent) and
take m as above (that is, the maximum exponent). In this case I claim

that dm and ab are associates. It suffices to check this prime by prime,
in which case this becomes the simple rule,

m +n = max(m,n) + min(m,n)

where m and n are integers.
3. (a) As x+4 has degree one, either it divides 2® — 6z 47 or these two
polynomials are coprime. But if z + 4 divides 2 — 62 4+ 7 then z = —4
is a root of 23 — 6z + 7, which it obviously is not. Thus the ged is 1.
(b) We have 27 — 2% = 2%(2® — 1). Hence
ot 1= - 1)+ 2% -1
= (* = 1)(z* +1).

Thus the ged is 23 — 1.



4. We apply Euclid’s algorithm. 135 — 147 has smaller absolute value
than 155 4 344. So we try to divide 155 + 34¢ by 135 — 14s.

155 + 347 (155 + 341)(135 + 147)

135 — 147 1352 4 142

(135-155 — 34 - 14) + (155 - 14 4 135 - 34)i
1352 + 142 '

The closest Gaussian integer is 1. The remainder is then

155 + 347 — (135 — 144)1 = 20 + 48i.

So now we want to find the greatest common divisor of 135 — 147 and
20 4 48:. We try to divide 20 + 487 into 135 — 14s.
135 —14i (135 — 144)(20 — 48q)
20 +48; 202 + 482
(135-20 — 48 - 14) — (135 - 48 + 14 - 20):
202 + 482 '

The closest Gaussian integer is 1 — 2i. The remainder is then

135—14i— (20+48i)(1—2i) = (135—20—96)+(—14—48+40)i = 19—22;.

So now we want to find the greatest common divisor of 19 — 22; and
20 + 48i. So we try to divide 20 4 48¢ by 19 — 224.

20 + 48 (20 + 48¢)(19 + 22i)

19 —22; 192 + 222

(20 -19 — 48 - 22) + (20 - 22 + 48 - 19)i
192 + 222 '

The closest Gaussian integer is —1 + 2i. The remainder is then

20448i — (19—22i)(—1+2i) = (20+19—44)+(48—22—38)i = —5—12i.

So now we want to find the greatest common divisor of 19 — 22¢ and
—5 — 12i. So we try to divide —5 — 127 into 19 — 221.

20 +48i (19 —22i)(5 — 12i)

—5—12 52 + 122
(2212 —-19-5) 4+ (19-12+ 5 - 22)i
N 52 + 122
=1+ 2.

As there is no remainder, the greatest common divisor of 135 — 147 and

155 4 344 is 5 4 124.
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5. It is convenient to introduce the norm, N(«), of any element of
Z[/=5]. In fact it is not harder to do the general case Z[v/d], where d
is any square-free integer. Given av = a+bv/d, the norm is by definition
N(a) = a® — b*d.
Using the well-known identity,
A* - B? = (A+ B)(A - B),
note that the norm can be rewritten,
N(a) = (a+bVd)(a — bVd) = aa,

where @, known as the conjugate of «, is by definition a — bv/d. Note
that in the case d < 0, in fact & is precisely the complex conjugate
of a. The key property of the norm, which may be checked easily, is
that it is multiplicative (this is automatic when d < 0). Suppose that
v = af, then

N(7) = N(a)N(B).
Indeed if o = a + bv/d and = o’ + ¥'V/d, then
v = (ad’ 4 bb'd) + (a'b+ ab')Vd,
so that
N(v) = (ad’ + bb'd)* — d(a'b + ab')?
= (ad")* + (b0')*d® — d(a’b)? — d(ab')?.
On the other hand
N(@)N(8) = (a* — B2d)((a)? — (v)?d)
= (ad’)? + (bb')*d® — d(a'b)* — d(ab)?
= N().

We first use this to determine the units. Note that if « is a unit, then
there is an element 3 such that a5 = 1. Thus

N(@)N(8) = N(aB) = N(1) = 1,

so that N(a) and N(f) are divisors of 1. Thus if o = a + b\/d is unit,
then a? — b®d = £1. Conversely, if the norm of « is &1, then Fa is
the inverse of a. It follows that the units are precisely those elements
whose norm is £1.

(a) As d = —5, the units are precisely those elements a = a + by/—5
such that

a® + 5b% = 1.
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The only possibilities are a = +1, b = 0, so that a« = +1. Suppose
that 2 is not irreducible, so that 2 = a3, where o and (8 are not units.
Then

4= N(2) = N(@)N(9).

As a and f are not units, then N(a) and N (/) are greater than one.
It follows that N(«) = N(f) = 2. Suppose that

a’® + 5% = 2.

Then b = 0 and @ = £+v/2, not an integer. Thus 2 is irreducible.
For 3, the proof proceeds verbatim, with 2 replacing 3. The crucial
observation is that one cannot solve

a®+ b = 3.

where a and b are integers. For 1 + \/3, observe that its norm is 6,
so that a and 8 are of norm 2 and 3, which we have already seen is
impossible.

(b) It suffices to prove that every ascending chain of principal ideals
stabilises. But this is clear, since if

(a) C (B),
then
N(B) < N(a),

with equality in one equation if and only if there is equality for the
other. Thus a strictly increasing chain of principal ideals is the same
thing as a strictly decreasing chain of natural numbers. Thus the set
of principal ideals satisfies ACC as the set of natural numbers satisfies

DCC.
() By (a),
6=2-3=(14++v-5)(1—-V=5),

are two different factorisations of 6 into irreducibles.
Challenge Problems: (Just for fun)

6. Say that S has the cancellation property if whenever a+b = a+c
then b = ¢. This is the natural analogue of the condition that there
are no zero divisors in the ring; it is equivalent to saying that S can be
embedded in a group.

Say that a and b are associates if a = b+ ¢ and a + d = b for some ¢
and d.

Say that p is prime if whenever p 4+ ¢ = a + b then either p+d = a or

p+ d = b for some d.
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We say that S has unique factorisation if every non-zero element
a of S, not a unit, is a sum of primes, unique up to re-ordering and
associates.

7. First thin out the sequence vy, vo, ..., v, by discarding any elements
which are positive integral linear combinations of the other vectors.
The remaining vectors are then all irreducible.

In this case I claim that S has unique factorisation if and only if
V1, Vg, ..., 0, are independent as vectors in the vector space Q?. In
particular if S has unique factorisation then n < 2 and if there are two
vectors, then neither is a multiple of the other.

Indeed suppose that we don’t have unique factorisation. Then there is

v € Z? such that,
V= Zaﬂ)i = Zbivi;

where a; # b; for some i and ay, as, ..., a, and by, by, ... b, are positive
integers. Subtracting one side from the other, exhibits a linear depen-
dence between vy, vs, . .., v,. Conversely, suppose that vy, vs, ..., v, are
linearly dependent. Then we could find rational numbers ¢y, ¢s, . .., ¢y,
not all zero, so that

Z CU; = 0.

Separating into positive and negative parts, ay, as, . .., a, and by, bs, ..., b,
and putting the negative part on the other side, we would have

Z a;V; = Z biv;,

for some positive rational numbers aq, as, ..., a, and by, b, ..., b,. Mul-
tiplying through by a highly divisible positive integer, we could clear
denominators, so that aq,as,...,a, and by, by, ..., b, are integers. But
then unique factorisation fails.

8. Let k£ be a field and let S be the infinite polynomial ring

k[[El,ZL’Q, .. ]

Let I be the ideal generated by xixs = x3rsxs and xuxs = xgr72s8,
T7xg = ToT1ox1; and so on. Let R be the ring S/I. It is not hard to
show that x1, zo, ... are irreducible and that every element is a product
of irreducibles.

Consider a = z;2z9 € R. Then z; and xy are irreducible and so a
is a product of irreducibles. But z;x9 = x3x425, so that a is also a
product of z3, 4 and x5. As x4x5 = w708 We can keep going and the
factorisation algorithm does not terminate starting with a.



