
MODEL ANSWERS TO THE FOURTH HOMEWORK

1. As d′ divides a and b, by the universal property of d, d′|d. By
symmetry d divides d′. But then d and d′ are associates.
2. (a) As R is a UFD, we may factor a and b as

a = upm1
1 pm2

2 · · · p
mk
k and b = vpn1

1 p
n2
2 · · · p

nk
k ,

where p1, p2, . . . , pk are primes, m1,m2, . . . ,mk and n1, n2, . . . , nk are
natural numbers, possibly zero, and u and v are units. Define

m = po11 p
o2
2 · · · p

ok
k

where oi is the maximum of mi and ni. It follows easily that a|m and
b|m.
Now suppose that a|m′ and b|m′. Then, possibly enlarging our list of
primes, we may assume that

m′ = wpr11 p
r2
2 · · · p

rk
k ,

where w is a unit and r1, r2, . . . , rk are positive integers. As a|m′, ri ≥
mi. Similarly as b|m′, ri ≥ ni. It follows that ri ≥ oi = max(mi, ni).
Thus m is indeed an lcm of a and b. Uniqueness of lcms’ up to asso-
ciates, follows as in the proof of uniqueness of gcd’s.
(b) It suffices to prove this result for one choice of gcd d and one choice
of lcm m. Pick d as in class (that is, take the minimum exponent) and
take m as above (that is, the maximum exponent). In this case I claim
that dm and ab are associates. It suffices to check this prime by prime,
in which case this becomes the simple rule,

m+ n = max(m,n) + min(m,n)

where m and n are integers.
3. (a) As x+4 has degree one, either it divides x3−6x+7 or these two
polynomials are coprime. But if x+ 4 divides x3− 6x+ 7 then x = −4
is a root of x3 − 6x+ 7, which it obviously is not. Thus the gcd is 1.
(b) We have x7 − x4 = x4(x3 − 1). Hence

x7 − x4 + x3 − 1 = x4(x3 − 1) + x3 − 1

= (x3 − 1)(x4 + 1).

Thus the gcd is x3 − 1.
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4. We apply Euclid’s algorithm. 135 − 14i has smaller absolute value
than 155 + 34i. So we try to divide 155 + 34i by 135− 14i.

155 + 34i

135− 14i
=

(155 + 34i)(135 + 14i)

1352 + 142

=
(135 · 155− 34 · 14) + (155 · 14 + 135 · 34)i

1352 + 142
.

The closest Gaussian integer is 1. The remainder is then

155 + 34i− (135− 14i)1 = 20 + 48i.

So now we want to find the greatest common divisor of 135− 14i and
20 + 48i. We try to divide 20 + 48i into 135− 14i.

135− 14i

20 + 48i
=

(135− 14i)(20− 48i)

202 + 482

=
(135 · 20− 48 · 14)− (135 · 48 + 14 · 20)i

202 + 482
.

The closest Gaussian integer is 1− 2i. The remainder is then

135−14i−(20+48i)(1−2i) = (135−20−96)+(−14−48+40)i = 19−22i.

So now we want to find the greatest common divisor of 19 − 22i and
20 + 48i. So we try to divide 20 + 48i by 19− 22i.

20 + 48i

19− 22i
=

(20 + 48i)(19 + 22i)

192 + 222

=
(20 · 19− 48 · 22) + (20 · 22 + 48 · 19)i

192 + 222
.

The closest Gaussian integer is −1 + 2i. The remainder is then

20+48i−(19−22i)(−1+2i) = (20+19−44)+(48−22−38)i = −5−12i.

So now we want to find the greatest common divisor of 19 − 22i and
−5− 12i. So we try to divide −5− 12i into 19− 22i.

20 + 48i

−5− 12i
= −(19− 22i)(5− 12i)

52 + 122

=
(22 · 12− 19 · 5) + (19 · 12 + 5 · 22)i

52 + 122

= 1 + 2i.

As there is no remainder, the greatest common divisor of 135−14i and
155 + 34i is 5 + 12i.
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5. It is convenient to introduce the norm, N(α), of any element of

Z[
√
−5]. In fact it is not harder to do the general case Z[

√
d], where d

is any square-free integer. Given α = a+b
√
d, the norm is by definition

N(α) = a2 − b2d.

Using the well-known identity,

A2 −B2 = (A+B)(A−B),

note that the norm can be rewritten,

N(α) = (a+ b
√
d)(a− b

√
d) = αᾱ,

where ᾱ, known as the conjugate of α, is by definition a− b
√
d. Note

that in the case d < 0, in fact ᾱ is precisely the complex conjugate
of α. The key property of the norm, which may be checked easily, is
that it is multiplicative (this is automatic when d < 0). Suppose that
γ = αβ, then

N(γ) = N(α)N(β).

Indeed if α = a+ b
√
d and β = a′ + b′

√
d, then

γ = (aa′ + bb′d) + (a′b+ ab′)
√
d,

so that

N(γ) = (aa′ + bb′d)2 − d(a′b+ ab′)2

= (aa′)2 + (bb′)2d2 − d(a′b)2 − d(ab′)2.

On the other hand

N(α)N(β) = (a2 − b2d)((a′)2 − (b′)2d)

= (aa′)2 + (bb′)2d2 − d(a′b)2 − d(ab)2

= N(γ).

We first use this to determine the units. Note that if α is a unit, then
there is an element β such that αβ = 1. Thus

N(α)N(β) = N(αβ) = N(1) = 1,

so that N(α) and N(β) are divisors of 1. Thus if α = a+ b
√
d is unit,

then a2 − b2d = ±1. Conversely, if the norm of α is ±1, then ∓ᾱ is
the inverse of α. It follows that the units are precisely those elements
whose norm is ±1.
(a) As d = −5, the units are precisely those elements α = a + b

√
−5

such that

a2 + 5b2 = 1.
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The only possibilities are a = ±1, b = 0, so that α = ±1. Suppose
that 2 is not irreducible, so that 2 = αβ, where α and β are not units.
Then

4 = N(2) = N(α)N(β).

As α and β are not units, then N(α) and N(β) are greater than one.
It follows that N(α) = N(β) = 2. Suppose that

a2 + 5b2 = 2.

Then b = 0 and a = ±
√

2, not an integer. Thus 2 is irreducible.
For 3, the proof proceeds verbatim, with 2 replacing 3. The crucial
observation is that one cannot solve

a2 + b2 = 3.

where a and b are integers. For 1 +
√

5, observe that its norm is 6,
so that α and β are of norm 2 and 3, which we have already seen is
impossible.
(b) It suffices to prove that every ascending chain of principal ideals
stabilises. But this is clear, since if

〈α〉 ⊂ 〈β〉,

then

N(β) ≤ N(α),

with equality in one equation if and only if there is equality for the
other. Thus a strictly increasing chain of principal ideals is the same
thing as a strictly decreasing chain of natural numbers. Thus the set
of principal ideals satisfies ACC as the set of natural numbers satisfies
DCC.
(c) By (a),

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5),

are two different factorisations of 6 into irreducibles.

Challenge Problems: (Just for fun)

6. Say that S has the cancellation property if whenever a+b = a+c
then b = c. This is the natural analogue of the condition that there
are no zero divisors in the ring; it is equivalent to saying that S can be
embedded in a group.
Say that a and b are associates if a = b+ c and a+ d = b for some c
and d.
Say that p is prime if whenever p+ c = a+ b then either p+ d = a or
p+ d = b for some d.
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We say that S has unique factorisation if every non-zero element
a of S, not a unit, is a sum of primes, unique up to re-ordering and
associates.
7. First thin out the sequence v1, v2, . . . , vn by discarding any elements
which are positive integral linear combinations of the other vectors.
The remaining vectors are then all irreducible.
In this case I claim that S has unique factorisation if and only if
v1, v2, . . . , vn are independent as vectors in the vector space Q2. In
particular if S has unique factorisation then n ≤ 2 and if there are two
vectors, then neither is a multiple of the other.
Indeed suppose that we don’t have unique factorisation. Then there is
v ∈ Z2 such that,

v =
∑

aivi =
∑

bivi,

where ai 6= bi for some i and a1, a2, . . . , an and b1, b2, . . . , bn are positive
integers. Subtracting one side from the other, exhibits a linear depen-
dence between v1, v2, . . . , vn. Conversely, suppose that v1, v2, . . . , vn are
linearly dependent. Then we could find rational numbers c1, c2, . . . , cn,
not all zero, so that ∑

civi = 0.

Separating into positive and negative parts, a1, a2, . . . , an and b1, b2, . . . , bn
and putting the negative part on the other side, we would have∑

aivi =
∑

bivi,

for some positive rational numbers a1, a2, . . . , an and b1, b2, . . . , bn. Mul-
tiplying through by a highly divisible positive integer, we could clear
denominators, so that a1, a2, . . . , an and b1, b2, . . . , bn are integers. But
then unique factorisation fails.
8. Let k be a field and let S be the infinite polynomial ring

k[x1, x2, . . . ].

Let I be the ideal generated by x1x2 = x3x4x5 and x4x5 = x6x7x8,
x7x8 = x9x10x11 and so on. Let R be the ring S/I. It is not hard to
show that x1, x2, . . . are irreducible and that every element is a product
of irreducibles.
Consider a = x1x2 ∈ R. Then x1 and x2 are irreducible and so a
is a product of irreducibles. But x1x2 = x3x4x5, so that a is also a
product of x3, x4 and x5. As x4x5 = x6x7x8 we can keep going and the
factorisation algorithm does not terminate starting with a.
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