MODEL ANSWERS TO THE FOURTH HOMEWORK

1. As d^{\prime} divides a and b, by the universal property of $d, d^{\prime} \mid d$. By symmetry d divides d^{\prime}. But then d and d^{\prime} are associates.
2. (a) As R is a UFD, we may factor a and b as

$$
a=u p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}} \quad \text { and } \quad b=v p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{k}^{n_{k}},
$$

where $p_{1}, p_{2}, \ldots, p_{k}$ are primes, $m_{1}, m_{2}, \ldots, m_{k}$ and $n_{1}, n_{2}, \ldots, n_{k}$ are natural numbers, possibly zero, and u and v are units. Define

$$
m=p_{1}^{o_{1}} p_{2}^{o_{2}} \cdots p_{k}^{o_{k}}
$$

where o_{i} is the maximum of m_{i} and n_{i}. It follows easily that $a \mid m$ and $b \mid m$.
Now suppose that $a \mid m^{\prime}$ and $b \mid m^{\prime}$. Then, possibly enlarging our list of primes, we may assume that

$$
m^{\prime}=w p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}
$$

where w is a unit and $r_{1}, r_{2}, \ldots, r_{k}$ are positive integers. As $a \mid m^{\prime}, r_{i} \geq$ m_{i}. Similarly as $b \mid m^{\prime}, r_{i} \geq n_{i}$. It follows that $r_{i} \geq o_{i}=\max \left(m_{i}, n_{i}\right)$. Thus m is indeed an lcm of a and b. Uniqueness of lcms' up to associates, follows as in the proof of uniqueness of gcd's.
(b) It suffices to prove this result for one choice of gcd d and one choice of lcm m. Pick d as in class (that is, take the minimum exponent) and take m as above (that is, the maximum exponent). In this case I claim that $d m$ and $a b$ are associates. It suffices to check this prime by prime, in which case this becomes the simple rule,

$$
m+n=\max (m, n)+\min (m, n)
$$

where m and n are integers.
3. (a) As $x+4$ has degree one, either it divides $x^{3}-6 x+7$ or these two polynomials are coprime. But if $x+4$ divides $x^{3}-6 x+7$ then $x=-4$ is a root of $x^{3}-6 x+7$, which it obviously is not. Thus the gcd is 1 .
(b) We have $x^{7}-x^{4}=x^{4}\left(x^{3}-1\right)$. Hence

$$
\begin{aligned}
x^{7}-x^{4}+x^{3}-1 & =x^{4}\left(x^{3}-1\right)+x^{3}-1 \\
& =\left(x^{3}-1\right)\left(x^{4}+1\right) .
\end{aligned}
$$

Thus the gcd is $x^{3}-1$.
4. We apply Euclid's algorithm. $135-14 i$ has smaller absolute value than $155+34 i$. So we try to divide $155+34 i$ by $135-14 i$.

$$
\begin{aligned}
\frac{155+34 i}{135-14 i} & =\frac{(155+34 i)(135+14 i)}{135^{2}+14^{2}} \\
& =\frac{(135 \cdot 155-34 \cdot 14)+(155 \cdot 14+135 \cdot 34) i}{135^{2}+14^{2}} .
\end{aligned}
$$

The closest Gaussian integer is 1 . The remainder is then

$$
155+34 i-(135-14 i) 1=20+48 i .
$$

So now we want to find the greatest common divisor of $135-14 i$ and $20+48 i$. We try to divide $20+48 i$ into $135-14 i$.

$$
\begin{aligned}
\frac{135-14 i}{20+48 i} & =\frac{(135-14 i)(20-48 i)}{20^{2}+48^{2}} \\
& =\frac{(135 \cdot 20-48 \cdot 14)-(135 \cdot 48+14 \cdot 20) i}{20^{2}+48^{2}} .
\end{aligned}
$$

The closest Gaussian integer is $1-2 i$. The remainder is then

$$
135-14 i-(20+48 i)(1-2 i)=(135-20-96)+(-14-48+40) i=19-22 i .
$$

So now we want to find the greatest common divisor of $19-22 i$ and $20+48 i$. So we try to divide $20+48 i$ by $19-22 i$.

$$
\begin{aligned}
\frac{20+48 i}{19-22 i} & =\frac{(20+48 i)(19+22 i)}{19^{2}+22^{2}} \\
& =\frac{(20 \cdot 19-48 \cdot 22)+(20 \cdot 22+48 \cdot 19) i}{19^{2}+22^{2}}
\end{aligned}
$$

The closest Gaussian integer is $-1+2 i$. The remainder is then
$20+48 i-(19-22 i)(-1+2 i)=(20+19-44)+(48-22-38) i=-5-12 i$.
So now we want to find the greatest common divisor of $19-22 i$ and $-5-12 i$. So we try to divide $-5-12 i$ into $19-22 i$.

$$
\begin{aligned}
\frac{20+48 i}{-5-12 i} & =-\frac{(19-22 i)(5-12 i)}{5^{2}+12^{2}} \\
& =\frac{(22 \cdot 12-19 \cdot 5)+(19 \cdot 12+5 \cdot 22) i}{5^{2}+12^{2}} \\
& =1+2 i .
\end{aligned}
$$

As there is no remainder, the greatest common divisor of $135-14 i$ and $155+34 i$ is $5+12 i$.
5. It is convenient to introduce the norm, $N(\alpha)$, of any element of $\mathbb{Z}[\sqrt{-} 5]$. In fact it is not harder to do the general case $\mathbb{Z}[\sqrt{d}]$, where d is any square-free integer. Given $\alpha=a+b \sqrt{d}$, the norm is by definition

$$
N(\alpha)=a^{2}-b^{2} d
$$

Using the well-known identity,

$$
A^{2}-B^{2}=(A+B)(A-B)
$$

note that the norm can be rewritten,

$$
N(\alpha)=(a+b \sqrt{d})(a-b \sqrt{d})=\alpha \bar{\alpha},
$$

where $\bar{\alpha}$, known as the conjugate of α, is by definition $a-b \sqrt{d}$. Note that in the case $d<0$, in fact $\bar{\alpha}$ is precisely the complex conjugate of α. The key property of the norm, which may be checked easily, is that it is multiplicative (this is automatic when $d<0$). Suppose that $\gamma=\alpha \beta$, then

$$
N(\gamma)=N(\alpha) N(\beta)
$$

Indeed if $\alpha=a+b \sqrt{d}$ and $\beta=a^{\prime}+b^{\prime} \sqrt{d}$, then

$$
\gamma=\left(a a^{\prime}+b b^{\prime} d\right)+\left(a^{\prime} b+a b^{\prime}\right) \sqrt{d}
$$

so that

$$
\begin{aligned}
N(\gamma) & =\left(a a^{\prime}+b b^{\prime} d\right)^{2}-d\left(a^{\prime} b+a b^{\prime}\right)^{2} \\
& =\left(a a^{\prime}\right)^{2}+\left(b b^{\prime}\right)^{2} d^{2}-d\left(a^{\prime} b\right)^{2}-d\left(a b^{\prime}\right)^{2}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
N(\alpha) N(\beta) & =\left(a^{2}-b^{2} d\right)\left(\left(a^{\prime}\right)^{2}-\left(b^{\prime}\right)^{2} d\right) \\
& =\left(a a^{\prime}\right)^{2}+\left(b b^{\prime}\right)^{2} d^{2}-d\left(a^{\prime} b\right)^{2}-d(a b)^{2} \\
& =N(\gamma)
\end{aligned}
$$

We first use this to determine the units. Note that if α is a unit, then there is an element β such that $\alpha \beta=1$. Thus

$$
N(\alpha) N(\beta)=N(\alpha \beta)=N(1)=1,
$$

so that $N(\alpha)$ and $N(\beta)$ are divisors of 1 . Thus if $\alpha=a+b \sqrt{d}$ is unit, then $a^{2}-b^{2} d= \pm 1$. Conversely, if the norm of α is ± 1, then $\mp \bar{\alpha}$ is the inverse of α. It follows that the units are precisely those elements whose norm is ± 1.
(a) As $d=-5$, the units are precisely those elements $\alpha=a+b \sqrt{-5}$ such that

$$
a^{2}+5 b^{2}=1
$$

The only possibilities are $a= \pm 1, b=0$, so that $\alpha= \pm 1$. Suppose that 2 is not irreducible, so that $2=\alpha \beta$, where α and β are not units. Then

$$
4=N(2)=N(\alpha) N(\beta)
$$

As α and β are not units, then $N(\alpha)$ and $N(\beta)$ are greater than one. It follows that $N(\alpha)=N(\beta)=2$. Suppose that

$$
a^{2}+5 b^{2}=2
$$

Then $b=0$ and $a= \pm \sqrt{2}$, not an integer. Thus 2 is irreducible. For 3 , the proof proceeds verbatim, with 2 replacing 3. The crucial observation is that one cannot solve

$$
a^{2}+b^{2}=3 .
$$

where a and b are integers. For $1+\sqrt{5}$, observe that its norm is 6 , so that α and β are of norm 2 and 3 , which we have already seen is impossible.
(b) It suffices to prove that every ascending chain of principal ideals stabilises. But this is clear, since if

$$
\langle\alpha\rangle \subset\langle\beta\rangle,
$$

then

$$
N(\beta) \leq N(\alpha)
$$

with equality in one equation if and only if there is equality for the other. Thus a strictly increasing chain of principal ideals is the same thing as a strictly decreasing chain of natural numbers. Thus the set of principal ideals satisfies ACC as the set of natural numbers satisfies DCC.
(c) $\mathrm{By}(\mathrm{a})$,

$$
6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})
$$

are two different factorisations of 6 into irreducibles.
Challenge Problems: (Just for fun)
6. Say that S has the cancellation property if whenever $a+b=a+c$ then $b=c$. This is the natural analogue of the condition that there are no zero divisors in the ring; it is equivalent to saying that S can be embedded in a group.
Say that a and b are associates if $a=b+c$ and $a+d=b$ for some c and d.
Say that p is prime if whenever $p+c=a+b$ then either $p+d=a$ or $p+d=b$ for some d.

We say that S has unique factorisation if every non-zero element a of S, not a unit, is a sum of primes, unique up to re-ordering and associates.
7. First thin out the sequence $v_{1}, v_{2}, \ldots, v_{n}$ by discarding any elements which are positive integral linear combinations of the other vectors. The remaining vectors are then all irreducible.
In this case I claim that S has unique factorisation if and only if $v_{1}, v_{2}, \ldots, v_{n}$ are independent as vectors in the vector space \mathbb{Q}^{2}. In particular if S has unique factorisation then $n \leq 2$ and if there are two vectors, then neither is a multiple of the other.
Indeed suppose that we don't have unique factorisation. Then there is $v \in \mathbb{Z}^{2}$ such that,

$$
v=\sum a_{i} v_{i}=\sum b_{i} v_{i}
$$

where $a_{i} \neq b_{i}$ for some i and $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are positive integers. Subtracting one side from the other, exhibits a linear dependence between $v_{1}, v_{2}, \ldots, v_{n}$. Conversely, suppose that $v_{1}, v_{2}, \ldots, v_{n}$ are linearly dependent. Then we could find rational numbers $c_{1}, c_{2}, \ldots, c_{n}$, not all zero, so that

$$
\sum c_{i} v_{i}=0
$$

Separating into positive and negative parts, $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ and putting the negative part on the other side, we would have

$$
\sum a_{i} v_{i}=\sum b_{i} v_{i},
$$

for some positive rational numbers $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$. Multiplying through by a highly divisible positive integer, we could clear denominators, so that $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are integers. But then unique factorisation fails.
8. Let k be a field and let S be the infinite polynomial ring

$$
k\left[x_{1}, x_{2}, \ldots\right] .
$$

Let I be the ideal generated by $x_{1} x_{2}=x_{3} x_{4} x_{5}$ and $x_{4} x_{5}=x_{6} x_{7} x_{8}$, $x_{7} x_{8}=x_{9} x_{10} x_{11}$ and so on. Let R be the ring S / I. It is not hard to show that x_{1}, x_{2}, \ldots are irreducible and that every element is a product of irreducibles.
Consider $a=x_{1} x_{2} \in R$. Then x_{1} and x_{2} are irreducible and so a is a product of irreducibles. But $x_{1} x_{2}=x_{3} x_{4} x_{5}$, so that a is also a product of x_{3}, x_{4} and x_{5}. As $x_{4} x_{5}=x_{6} x_{7} x_{8}$ we can keep going and the factorisation algorithm does not terminate starting with a.

