
MODEL ANSWERS TO THE SECOND HOMEWORK

Chapter 4, §3 3. As the unit element is unique, it suffices to prove that
φ(1) acts as a unit. Suppose that b ∈ R′. As φ is surjective, b = φ(a)
for some a ∈ R. Then

φ(1)b = φ(1)φ(a)

= φ(1 · a)

= φ(a)

= b.

4. As 0 ∈ I and 0 ∈ J , it follows that 0 = 0 + 0 ∈ I + J . In particular
I + J is non-empty. Suppose that x ∈ I + J and y ∈ I + J . Then
x = a + b and y = c + d, where a and c are in I and b and d are in J .
Then

x+ y = (a+ b) + (c+ d)

= (a+ c) + (b+ d).

As a+ c ∈ I and b+ d ∈ J , it follows that x+ y ∈ I + J . Now suppose
that x ∈ I + J and r ∈ R. Then

rx = r(a+ b)

= ra+ rb.

Thus rx ∈ I + J and so I + J is an ideal.
5. Let J = I ∩A. Note that J is an additive subgroup as I and A are
additive subgroups of R.
Suppose that j ∈ J and a ∈ A. Then aj ∈ I as a ∈ R and j ∈ I and
I is an ideal. On the other hand, as a ∈ A and j ∈ A it follows that
aj ∈ A. Thus aj ∈ J = I ∩ A.
Thus J is an ideal of A.
6. I ∩ J is an additive subgroup, as I and J are additive subgroups.
Suppose that r ∈ R and a ∈ I ∩ J . As a ∈ I and I is an ideal, ra ∈ I.
Similarly ra ∈ J . But then ra ∈ I ∩ J and I ∩ J is an ideal.
9. (a) Suppose that a and b ∈ A. Then a′ = φ(a), b′ = φ(b) ∈ A′. Thus

φ(a+ b) = φ(a) + φ(b)

= a′ + b′ ∈ A′,
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as A′ is closed under addition. Thus a + b ∈ A and A is closed under
addition. Similarly A is closed under additive inverses, multiplication
and A is non-empty, as it contains 0 for example. Thus A is a subring.
(b) Define

ψ : A −→ A′

by ψ(a) = φ(a). Then ψ is clearly a surjective ring homomorphism.
By definition K ⊂ A and so it is clear that the kernel of ψ is K. Now
apply the Isomorphism Theorem.
(c) Suppose r ∈ R and a ∈ A. Let a′ = φ(a) and r′ = φ(r). Then
a′ ∈ A′. Thus

φ(ra) = φ(r)φ(a)

= r′a′ ∈ A′,
as we are assuming that A′ is a left ideal. Thus ra ∈ A and so A is a
left ideal.
12. Define a map

φ : R −→ Zp

by the rule
φ(a/b) = [a][b]−1.

Note that [b] 6= 0 as b is coprime to p and so taking the inverse of [b]
makes sense. It is easy to check that φ is a surjective ring homomor-
phism. Moreover the kernel is clearly I. Thus the result follows by the
Isomorphism Theorem.
14. We first check that φ is a ring homomorphism. Let

A =

(
a b
−b a

)
and B =

(
c d
−d c

)
be two elements of R. Then

A+B =

(
a+ c b+ d
−(b+ d) a+ c

)
and AB =

(
ac− bd ad+ bc
−(ad+ bc) ac− bd

)
.

We have

φ(A+B) = (a+ c) + (b+ d)i

= (a+ bi) + (c+ di)

= φ(A) + φ(B)

and

φ(AB) = (ac− bd) + (ad+ bc)i

= (a+ bi)(c+ di)

= φ(A)φ(B).
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We also have

φ(I2) = 1.

Thus φ is a ring homomorphism. φ is visibly surjective and it easy to
see that the kernel of φ consists only of the zero matrix.
Thus φ is an isomorphism.
15. Suppose that a ∈ R. Then a ∈ IJ if and only if a has the form
i1j1 + i2j2 + · · ·+ ikjk, where i1, i2, . . . , ik and j1, j2, . . . , jk are in I and
J respectively. It is therefore clear that IJ is closed under addition
and it is clear that IJ is non-empty.
Suppose that r ∈ R and a ∈ I. Then

ra = r(i1j1 + i2j2 + · · ·+ ikjk)

= (ri1)j1 + (ri2)j2 + . . . (rik)jk.

As rip ∈ I, for all all p, it follows that ra is in IJ . Similarly ar is in
IJ , and so IJ is an ideal.
18. Under addition, the set R ⊕ S, with addition defined component-
wise, is equal to the set R × S, with addition defined componentwise.
We have already seen that this is a group, in 100A. It remains to check
that we have a ring. It is easy to see that multiplication is associative
and that (1, 1) plays the role of the identity; in fact just mimic the
relevant steps of the proof given in 100A that we have a group under
addition.
Finally it remains to check the distributive law. Suppose that x =
(a, b), y = (c, d), and z = (e, f) ∈ R⊕ S. Then

x(y + z) = (a, b) ((c, d) + (e, f))

= (a, b)(c+ e, d+ f)

= (a(c+ e), b(d+ f))

= (ac+ ae, bd+ bf)

= (ac+ ae, bd+ bf)

= (ac, bd) + (ae, bf)

= (a, b)(c, d) + (a, b)(e, f)

= xy + xz.

Similarly the other way around. Thus the distributive law holds.
Define a map φ : R⊕S −→ S be sending (r, s) to s. As we saw in 100A,
this is a group homomorphism, of the underlying additive groups. It
remains to check what happens under multiplication, but the proof is
obviously the same as checking addition. Thus φ is a ring homorphism.
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The kernel is obviously

I = { (r, 0) | r ∈ R }.

In particular I is an ideal. Consider the map ψ : R −→ R⊕S such that
ψ(r) = (r, 0). This is obviously a bijection with I and it was checked
in 100A that it is a group homomorphism. It is easy to see that in fact
ψ is also a ring homomorphism.
The rest follows by symmetry.
Finally, in terms of what comes next in the homework, I claim that
R⊕ S is both the direct sum and product in the category of rings.
The categorical product of R and S, denoted R×S is an object together
with two morphisms p : R × S −→ R and q : R × S −→ S that are
universal amongst all such morphisms, in the following sense.
Suppose that there are morphisms f : T −→ R and g : T −→ S. Then
there is a unique morphism T −→ R × S which makes the following
diagram commute,

R

T -

f
-

R× S

p

6

S

q

?
g -

A direct sum is precisely the same as a product, except we switch the
arrows. That is, the direct sum R⊕ S satisfies the following universal
property. There are ring homomorphisms, a : R −→ R⊕S and b : S −→
R ⊕ S such that given any pair of ring homomorphisms c : R −→ T
and d : S −→ T there is a unique ring homomorphism f : R⊕ S −→ T
such that the following diagram commutes,

R

R⊕ S

a

?
f - T

c

-

S

b
6

d

-

The reader is invited to prove that R ⊕ S does indeed satisfy the uni-
versal properties of both the direct sum and the product.
19. (a) This was already proved in homework one.
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Another, slightly more sophisticated, way to solve this problem is as
follows. Matrices in R correspond to linear maps

φ : R2 −→ R2

such that the vector e2 = (0, 1) is an eigenvalue of φ, that is, φ(e2) = ce2
for some scalar c. With this description of R, it is very easy to see that
R is an additive subgroup of 2× 2 matrices and that it is closed under
multiplication.
(b) I is clearly non-empty and closed under addition. Now suppose
A ∈ R and B ∈ I, so that

A =

(
a b
0 c

)
B =

(
0 d
0 0

)
.

Then

AB =

(
0 ad
0 0

)
,

and

BA =

(
0 cd
0 0

)
.

Thus both AB and BA are in I. It follows that I is an ideal.
Again, another way to see this is to state that I corresponds to all
transformations φ of R2, such that φ(e1) = be2 and e2 is in the kernel
of φ. The fact that I is an ideal then follows readily.
(c) Define a map

φ : R −→ R⊕ R
by sending

A =

(
a b
0 c

)
to the vector (a, c) ∈ R⊕R. We first check that φ is a ring homomor-
phism. It is not hard to see that φ respects addition, so that if A and
B are in R then φ(A + B) = φ(A) + φ(B). We check multiplication.
We use the notation as in (1). Then

φ(AB) = (aa′, bb′)

= (a, b)(a′, b′)

= φ(A)φ(B).

Further φ(I2) = 1. Thus φ is certainly a ring homomorphism. It is also
clearly surjective and the kernel is equal to I (thereby providing a dif-
ferent proof that I is an ideal). The result follows by the Isomorphism
Theorem.

5



20. The fact that the map φ is a ring homomorphism follows imme-
diately from the universal property of R1 ⊕ R2. Now suppose that
r ∈ Kerφ. Then r + I = I, so that r ∈ I and similarly r ∈ J . Thus
r ∈ I ∩ J . Thus Kerφ ⊂ I ∩ J . The reverse inclusion is just as easy to
prove. Thus Kerφ = I ∩ J .
22. (a) Clearly a multiple of mn is a multiple of m and a multiple of
n so that Imn ⊂ Im ∩ In. Now suppose that a ∈ Im ∩ In. Then a = bm
and a = cn. As m and n are coprime, by Euclid’s algorithm, there are
two integers r and s such that

1 = rm+ sn.

Multiplying by a, we have

a = rma+ sna

= (rc)mn+ (sb)mn

= (rc+ sb)mn.

Thus a ∈ Imn and so Imn = Im ∩ In.
(b) Apply (20) to R = Z. It follows that there is a ring homomorphism

φ : Z −→ Z/Im ⊕ Z/In,

such that Im ∩ In = Imn is the kernel. Thus, by the Isomorphism
Theorem, there is an injective ring homomorphism

ψ : Z/Imn −→ Z/Im ⊕ Z/In.

23. By 22 (b) we already know that there is an injective ring homo-
morphism from one to the other. On the other hand, both sides have
cardinality mn. It follows that the given ring homomorphism is in fact
an isomorphism.
2. Bonus Problems 26. Let fi : S −→ R be the projection of S onto
the ith (counting left to right and then top to bottom), for i = 1, 2,
3 and 4. Denote by Ji the projection of I to R, via fi. Suppose that
a ∈ J1, so that there is a matrix

A =

(
a b
c d

)
∈ I.

Multiplying on the left and right by

B =

(
1 0
0 0

)
,

we see that (
a 0
0 0

)
∈ I.
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Now multiply by

B =

(
0 0
1 0

)
,

on the left to conclude that (
0 0
a 0

)
∈ I.

Thus a ∈ J3. By symmetry, we conclude that Ji = J is independent of
i and as I is an additive subgroup, that I consists of all matrices with
entries in J . It remains to prove that J is an ideal. It is clear that J
is an additive subgroup. On the other hand if a ∈ J and r ∈ R, then

A =

(
a 0
0 0

)
∈ I

and

B =

(
r 0
0 0

)
∈ S.

Thus

BA =

(
ra 0
0 0

)
∈ I,

and so ra ∈ J . Similarly ar ∈ J and so J is indeed an ideal.
27. Denote by m the product of the primes p1, p2, . . . , pn. Then we want
to know the number of solutions of x2 = x inside the ring R = Zm. By
repeated application of the Chinese Remainder Theorem,

Zm ' Zp1 ⊕ Zp2 ⊕ Zp3 ⊕ · · · ⊕ Zpn .

As multiplication is computed component by component on the RHS,
solving the equation x2 = x, is equivalent to solving the n equations
x2 = x in the n rings Zpi and taking the product. Now x = 0 is
always a solution of x2 = x. So if m is prime and x 6= 0, x2 = x, then
multiplying by the inverse of x, we have x = 1. Thus, prime by prime,
there are two solutions, making a total of 2n solutions in R.
3. (i) The action is the usual one

G× F3
2 −→ F3

2 given by A · v = Av,

ordinary matrix multiplication.
(ii) Note that a line in any vector space is determined by a non-zero
vector. However two non-zero vectors will determine the same line if
one is a scalar multiple of the other.
In the case when the underlying field is F2 there is only one non-zero
scalar, and so lines in F3

2 correspond to non-zero vectors,

F3
2 \ {(0, 0, 0)}.
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(iii) F3
2 has 8 = 23 elements and so P2

F2
has 7 = 8− 1 elements.

(iv) It is easy to see that G acts transitively on P2
F2

. So we just need to
consider how many linear maps fix a non-zero vector. We may suppose
this vector is (1, 0, 0). If A ∈ GL3(F2) fixes (1, 0, 0) then

A =

1 ∗ ∗
0 ∗ ∗
0 ∗ ∗


where stars indicate arbitrary elements of F2. The condition that A is
invertible translates to the condition that the bottom right 2× 2 block
is invertible. We saw in the previous homework set that there are 6
invertible 2 × 2 matrices. As the second and third entries of the first
row are arbitrary this means that the stabiliser of (1, 0, 0) is a subgroup
with

6 · 2 · 2 = 23 · 3
elements.
But then G has

23 · 3 · 7 = 168

elements.
(v) Let H be a normal subgroup of G with more than one element.
Let p, q and r be any set of three non-collinear points of P2

F2
. Then p,

q and r give three independent vectors in F3
2 and so they are a basis of

F3
2. It follows that given any other set p′, q′ and r′ of three non-collinear

points of P2
F2

there is a unique element g of G such that

g · p = p′ g · q = q′ and g · r = r′.

Pick h ∈ H, h 6= e. Then we may find p 6= q ∈ P2
F2

such that h · p = q.
Given a 6= b ∈ P2

F2
pick g ∈ G such that g ·p = a and g ·q = b. Consider

k = ghg−1. Then k · a = b. But k ∈ H as H is normal.
In particular the action of H on P2

F2
is transitive. Further H contains

at least 7 · 6 elements.
Fix p ∈ P2

F2
and consider the stabiliser K of p in H. As all stabilisers

are conjugate, K contains at least 6 elements. Suppose that h ∈ K
such that h · q = r 6= q. If p, q and r are not collinear then there are
3 choices for h as there are three lines through p. Thus we may find
h ∈ K such that h · p = p and h · q = r, where p, q and r are not
collinear.
Then given a and b, where a, b and q are not collinear, we may find
g ∈ G such that

g · p = p g · q = a and g · r = b.
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Arguing as before, we may find k ∈ H such that

k · p = p k · a = b.

The number of pairs a and b such that a, b and p are not collinear is 6·4.
Thus, including the identity, H contains at least 7 · 6 · 4 + 1 = 85 > 84.
It follows that H = G and so G is simple.
(vi) We just need to count the number of planes in F3

2. A plane is
determined by a homogenous linear equation

ax+ by + cz = 0.

Here (x, y, z) are the usual coordinates. Two equations determine the
same plane if and only if one is a non-zero scalar multiple of the other.
As there is only one non-zero scalar, planes are therefore in correspon-
dence with non-zero vectors (a, b, c). There are 7 = 23 − 1 choices for
a, b and c.
Aliter: We can use (vii) to count the number of projective lines.
Two points determine a projective line. There are 7 choices for the
first point and 6 = 7− 1 choices for the second point.
But the same projective line is then counted more than once. A pro-
jective line contains 3 = 22− 1 points. There are 3 choices for the first
point and 2 = 3− 1 for the second point.
Thus there are

7 =
7 · 6
3 · 2

lines.
(vii) Suppose we are given two distinct points of P2

F2
. Then we get two

non-zero vectors in F3
2. These determine a unique plane which then

gives a projective line.
Now suppose we are given two projective lines. This gives two planes
in F3

2. These intersect along a line which then gives a point of P2
F2

.
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