
SECOND MIDTERM

MATH 100B, UCSD, WINTER 24

You have 80 minutes.

There are 7 problems, and the total number of

points is 90. Show all your work. Please make

your work as clear and easy to follow as possible.
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Problem Points Score
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2 15

3 10

4 10

5 20

6 10

7 10

8 10

9 10

10 10

Total 90
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1. (15pts) Give the definition of an irreducible element of an integral

domain.

Let R be an integral domain and let a be a non-zero element of R that
is not invertible.
We say that a ∈ R is irreducible if whenever a = bc then one of b or c
is invertible.

(ii) Give the definition of a prime element of an integral domain.

Let R be an integral domain and let p ∈ R be a non-zero element of
R. We say that p is prime if 〈p〉 is a prime ideal.

(iii) Give the definition of a principal ideal domain.

Let R be an integral domain. We say that R is a PID if every ideal is
principal.
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2. (15pts) Let a and b be two elements of an integral domain.

Show that the following are equivalent’

(i) a divides b.
(ii) b ∈ 〈a〉
(iii) 〈b〉 ⊂ 〈a〉.

Suppose that (i) holds. Then we may find q ∈ R so that b = qa. In
this case b ∈ 〈a〉. Thus (i) implies (ii). Now suppose that (ii) holds.
Then we may find q ∈ R such that b = qa. But then a divides b. Thus
(ii) implies (i). It follows that (i) and (ii) are equivalent.
Suppose that (ii) holds. Then 〈a〉 is an ideal that contains b. As 〈b〉
is the smallest ideal that contains b we must have 〈b〉 ⊂ 〈a〉. Thus (ii)
implies (iii). Now suppose that (iii) holds. Note that

b = 1 · b ∈ 〈b〉 ⊂ 〈a〉.

Thus b ∈ 〈a〉. Hence (iii) implies (ii). It follows that (ii) and (iii) are
equivalent.
Hence (i), (ii) and (iii) are all equivalent.
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3. (10pts) Show that if R is a PID and a and b are two elements of R
then the greatest common divisor d of a and b exists and that we may

find r and s ∈ R such that d = ra+ sb.

Consider the ideal I generated by a and b, 〈a, b〉. As R is a PID,
I = 〈d〉. As d ∈ I, d = ra+ sb, for some r and s in R. As a ∈ I = 〈d〉,
d divides a. Similarly d divides b. Suppose that d′ divides a and d′

divides b. Then 〈a, b〉 ⊂ 〈d′〉. But then d′|d.
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4. (10pts) Show that the Gaussian integers Z[i] are a Euclidean do-

main.

Define a function
d : R− {0} −→ N ∪ {0},

by sending a+ bi to its norm, which is by definition a2 + b2.
We check the axioms for a Euclidean domain.
Note first that if z is a complex number, then the absolute value of
z, defined as the square root of the product of z with its complex
conjugate z̄, is closely related to the norm of z.
In fact if z is a Gaussian integer x+ iy, then

|z|2 = zz̄ = x2 + y2 = d(z).

On the other hand, suppose we use polar coordinates, rather than
Cartesian coordinates, to represent a complex number,

z = reiθ.

Then r = |z|.
For any pair z1 and z2 of complex numbers, we have

|z1z2| = |z1||z2|.

Indeed this is clear if we use polar coordinates. Now suppose that both
z1 and z2 are Gaussian integers. If we square both sides of the equation
above, we get

d(z1z2) = d(z1)d(z2).

As the absolute value of a Gaussian integer is always at least one, (1)
follows easily.
To prove (2), it helps to think about this problem geometrically. First
note that one may think of the Gaussian integers as being all points in
the plane with integer coordinates. Fix a Gaussian integer α. To obtain
all multiples of α = reiθ, that is, the principal ideal 〈α〉, it suffices to
take this lattice, rotate it through an angle of θ and stretch it by an
amount r. With this picture, it is clear that given any other Gaussian
integer β, there is a multiple of α, call it qα, such that the square of
the distance between β and qα is at most r2/2. Indeed let γ = β/α.
Pick a Gaussian integer q such that the square of the distance between
γ and q is at most 1/2. Then the distance between β = γα and qα is
at most r2/2. Thus we may write

β = qα + r,

(different r of course) such that d(r) < d(α).
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5. (20pts) (i) Carefully state Gauss’ Lemma.

If f(x) ∈ Z[x] is an irreducible element of Z[x] then it is an irreducible
element of Q[x].

(ii) Prove that the polynomial

f(x) = x3 + 5x+ 2

is an irreducible element of Q[x].

It suffices to show that it is an irreducible element of Z[x]. Suppose
not. As the content of f is one, we can write f = gh, where g and h
are polynomials with integer coefficient of degree at least one.
We may suppose that the degree of g is at most the degree of h. As the
degree of f is three, it follows that g has degree one and h has degree
two, so that

g(x) = ax+ b and h(x) = cx2 + dx+ e.

As ac = 1 we may suppose that a = c = ±1. Possibly multiplying g
and h by −1 we may assume that a = c = 1, so that

(x+ b)(x2 + dx+ e) = x3 + 5x+ 2.

It follows that if f(x) is reducible then it has an integer root −b.
Note that be = 2. Thus b = ±1, ±2. It is easy to check that ∓1 and
∓2 are not roots, so that f(x) is irreducible.
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6. (10pts) State Eisenstein’s criteria. Prove that the polynomial f(x)

10x10−9x9+21x8−15x7−33x6+30x8+24x5+6x4−9x3−3x2+9x+3,

is an irreducible element of Q[x].

Let f(x) ∈ Z[x] be a polynomial with integer coefficients. If p is a
prime that does not divide the leading coefficient, p divides every other
coefficient and p2 does not divide the constant coefficient then f(x) is
an irreducible element of Q[x].
Let p = 3. Then 3 does not divide the leading coefficient 10, 3 divides
every other coefficient and 9 does not divide the constant coefficient 3.
Thus f(x) is irreducible, by Eisenstein’s criteria applied with p = 3.
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7. (10pts) Find all irreducible polynomials of degree at most three over

the field with three elements.

It suffices to find all monic polynomials and then multiply by 2 to get
the other polynomials. Every non-zero constant is invertible.
Every degree one polynomial is irreducible; these are

x, x+ 1, x+ 2, 2x, 2x+ 1 and 2x+ 2.

A quadratic or cubic polynomial is irreducible if and only if it has no
roots.
Suppose that f(x) = x2 + ax+ b is a monic quadratic. 0 is not a zero
if and only if b 6= 0. 1 is not a zero if and only if 1+ a+ b 6= 0. 2 is not
a zero if and only if 1 + 2a + b 6= 0. If b = 1 we must have a 6= 1 and
2a 6= 1 so that a = 0. If b = 2 then a 6= 0 and 2a 6= 0, so that a = 1 or
2. Thus the irreducible quadratics are

x2+1, x2+x+2, x2+2x+2, 2x2+2, 2x2+x+1 and x2+x+2.

Now consider a monic cubic f(x) = x3 + ax2 + bx + c. 0 is not a zero
if and only if c 6= 0. 1 is not a zero if and only if 1 + a + b + c 6= 0. 2
is not a zero if and only if 2 + a + 2b + c 6= 0. If c = 1 we must have
a + b 6= 1 and a + 2b 6= 0 so that a = 0 and b = 2, or a = 1 and b = 2
or a = 2 and b = 0. If c = 2 then a + b 6= 0 and a + 2b 6= 2 so that
a = 0 and b = 2 or a = 1 and b = 0 or b = 1 or a = 2 and b = 2. Thus
the irreducible monic cubics are

x3+2x+1, x3+x2+2x+1, x3+2x2+1 and x3+2x2+x+1,

x3+2x+2, x3+x2+2, x3+x2+x+2 and x3+2x2+x+2.

If multiply these by two we get the other irreducible cubics.
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Bonus Challenge Problems

8. (10pts) Prove that if R is a UFD then R[x] is a UFD.

First consider trying to factor f(x) ∈ R[x] into irreducibles. We can
write f(x) = cg(x) where c ∈ R and the content of g(x) is one. As we
can factor c into irreducibles, it suffices to factor g(x) into irreducibles,
so we may assume that the content of f(x) is one.
If f(x) is not irreducible then we can find f1 and g1 of positive degree
such that f(x) = f1g1. As the degrees of f1 and g1 are smaller than
the degree of f it follows that f1 and g1 are products of irreducibles,
by induction on the degree. Thus every element of R[x] is a product of
irreducibles.
Now we turn to proving that irreducible implies prime. Suppose that
f(x) ∈ R[x] is irreducible. Then the content of f(x) is one. It follows
by Gauss’ Lemma that f(x) ∈ F [x] is irreducible, so that f(x) ∈ F [x]
is prime.
Suppose that f divides gh. As f(x) ∈ F [x] is prime it follows that it
must divide one of the factors. Suppose it divides g(x) in the polyno-
mial ring F [x]. Then we can write g(x) = f(x)k1(x), where k1(x) ∈
F [x]. If we clear denominators and cancel then g(x) = f(x)k(x) where
k(x) ∈ R[x] is a multiple of k1(x). But then f(x) divides g(x) in the
polynomial ring R[x]. Thus f(x) is a prime in R[x].
Thus R[x] is a UFD.
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9. (10pts) Construct a field with p2 elements.

We simply have to construct an irreducible quadratic polynomial over
Fp. If p = 2 then x2 + x+ 1 will do, as neither 0 nor 1 is a root.
Otherwise we may assume that p is odd. Consider x2 − a. This is
irreducible if x2 − a does not have a root. This is the same as to say
that a is not a square.
There are p choices for a. The squares are of the form b2 = (−b)2. As
p is odd b 6= −b and so there are (p− 1)/2 squares.
Thus x2 − a is irreducible, for some choice of a. As Fp[x] is a UFD, it
follows that x2 − a is a prime. Thus

〈x2 − a〉

is a prime ideal. The quotient is a field and it has p2 elements, since an
element of the quotient is uniquely represented by a linear polynomial
ax+ b and there are p2 choices for a and b.
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10. (10pts) Show that the polynomial

f = x3y + x2y2 + y3 − y2 − x− y + 1 ∈ C[x, y]

is irreducible.

We consider f as an element of (C(x))[y], so that we write f as poly-
nomial in y,

f = y3 − (x2 − 1)y2 + (x3 − 1)y + (1− x).

Then f belongs to the ring (C[x])[y] and the content of f is one, as the
coefficient of y3 is 1.
Note that p = x−1 ∈ C[x] is a prime in the ring C[x]. This prime does
not divide the leading coefficient, it does divide the other coefficients
but the square does not divide the constant coefficient.
Thus f is irreducible, by Eisenstein.
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