FIRST MIDTERM MATH 100B, UCSD, WINTER 24

You have 80 minutes.

There are 6 problems, and the total number of points is 85 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad
Student ID \#: \qquad
Section instructor: \qquad
Section Time: \qquad

Problem	Points	Score
1	15	
2	10	
3	15	
4	20	
5	10	
6	15	
7	10	
8	10	
Total	85	

1. (15pts) Give the definition of the Gaussian integers.

All complex numbers of the form $a+b i$ where a and b are integers.
(ii) Give the definition of a zero divisor.

A non-zero element a of a ring R is a zero divisor if there is a non-zero element b of R such that either $a b=0$ or $b a=0$.
(iii) Give the definition of a prime ideal.

An ideal I of a ring R is a prime ideal if whenever there are two elements of R such that $a b \in I$ then either $a \in I$ or $b \in I$.
2. (10pts) Let R and S be two rings.
(i) Show that $R \oplus S$ is a ring, where addition and multiplication are defined by

$$
\left(r_{1}, s_{1}\right)+\left(r_{2}, s_{2}\right)=\left(r_{1}+r_{2}, s_{1}+s_{2}\right) \quad \text { and } \quad\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)=\left(r_{1} r_{2}, s_{1} s_{2}\right)
$$

It was proved in 100A that $R \oplus S$ is an additive group. The element $(1,1)$ clearly plays the role of the identity. The fact that multiplication is associative follows similarly to the proof that addition is commutative. We check the distributive rule. Suppose that $x=(a, b), y=(c, d)$, and $z=(e, f) \in R \oplus S$. Then

$$
\begin{aligned}
x(y+z) & =(a, b)((c, d)+(e, f)) \\
& =(a, b)(c+e, d+f) \\
& =(a(c+e), b(d+f)) \\
& =(a c+a e, b d+b f) \\
& =(a c+a e, b d+b f) \\
& =(a c, b d)+(a e, b f) \\
& =(a, b)(c, d)+(a, b)(e, f) \\
& =x y+x z .
\end{aligned}
$$

Similarly the other way around. Thus the distributive law holds.
(ii) Show that the function

$$
\phi: R \oplus S \longrightarrow R \quad \text { given by } \quad(r, s) \longrightarrow r
$$

is a ring homomorphism.

We already saw in 100A that ϕ is a group homomorphism. $\phi(1,1)=1$ and so ϕ sends the identity to the identity. Let $x=(a, b)$ and $y=(c, d)$. We have

$$
\begin{aligned}
\phi(x) \phi(y) & =\phi(a, b) \phi(c, d) \\
& =a c \\
& =\phi(a c, b d) \\
& =\phi((a, d)(c, d)) \\
& =\phi(x y) .
\end{aligned}
$$

Thus ϕ is a ring homomorphism.
3. (15pts) (i) Let R be a commutative ring and let a be an element of R. Prove that the set

$$
\{r a \mid r \in R\}
$$

is an ideal of R.
$a=1 \cdot a \in\langle a\rangle$ and so $\langle a\rangle$ is non-empty. Suppose that x and y belong to $\langle a\rangle$. Then we may find r and $s \in R$ such that $x=r a$ and $y=s a$. In this case

$$
\begin{aligned}
x+y & =r a+s a \\
& =(r+s) a \in\langle a\rangle .
\end{aligned}
$$

Now suppose that $s \in R$ and $x \in\langle a\rangle$. Then we may $r \in R$ such that $x=r a$. In this case

$$
\begin{aligned}
s x & =s(r a) \\
& =(s r) a \in\langle a\rangle .
\end{aligned}
$$

Thus $\langle a\rangle$ is an ideal.
(ii) Show that a commutative ring R is a field if and only if the only ideals in R are the zero-ideal $\{0\}$ and the whole ring R.

Suppose that R is a field and let I be a non-zero ideal of R. Pick $a \in I$, not equal to zero. As R is a field, a is a unit. Let b be the inverse of a. Then $1=b a \in I$. Now pick $r \in R$. Then $r=r \cdot 1 \in I$. Thus $I=R$.
Now suppose that R has no non-trivial ideals. Pick a non-zero element $a \in R$. It suffices to find an inverse of a. Let I be the ideal generated by a. Then I has the form above. $a=1 \cdot a \in I$. Thus I is not the zero ideal. By assumption $I=R$ and so $1 \in I$. But then $1=b a$, some $b \in R$ and b is the inverse of a. Thus R is field.
(iii) Let $\phi: F \longrightarrow R$ be a ring homomorphism, where F is a field. Prove that ϕ is injective.

Let K be the kernel. As $\phi(1)=1,1 \notin K$. As K is an ideal, and F is field, it follows that K is the zero ideal. But then ϕ is injective.
4. (20pts) (i) Let R be a commutative ring and let I be an ideal. Show that R / I is an integral domain if and only if I is a prime ideal.

Let a and b be two elements of R and suppose that $a b \in I$, whilst $a \notin I$. Let $x=a+I$ and $y=b+I$. Then $x \neq I=0$.

$$
\begin{aligned}
x y & =(a+I)(b+I) \\
& =a b+I \\
& =I=0 .
\end{aligned}
$$

As R / I is an integral domain and $x \neq 0$, it follows that $b+I=y=0$. But then $b \in I$. Hence I is prime.
Now suppose that I is prime. Let x and y be two elements of R / I, such that $x y=0$, whilst $x \neq 0$. Then $x=a+I$ and $y=b+I$, for some a and b in R. As $x y=I$, it follows that $a b \in I$. As $x \neq I, a \notin I$. As I is a prime ideal, it follows that $b \in I$. But then $y=b+I=0$. Thus R / I is an integral domain.
(ii) Let R be an integral domain and let I be an ideal. Show that R / I is a field if and only if I is a maximal ideal.

Note that there a surjective ring homomorphism

$$
\phi: R \longrightarrow R / I
$$

which sends an element $r \in R$ to the left coset $r+I$. Furthermore there is a correspondence between ideals J of R / I and ideals K of R which contain I. Indeed, given an ideal J of R / I, let K be the inverse image of J. As $0 \in J, I \subset K$. Given $I \subset K$, let $J=\phi(I)$. It is easy to check that the given maps are inverses of each other. The zero ideal corresponds to I and R / I corresponds to R. Thus I is maximal if and only if R / I only contains the zero ideal and R / I.
On the other hand R / I is a field if and only if the only ideals in R / I are the zero ideal and the whole of R / I.
5. (10pts) Let R be a ring and let

$$
I_{1} \subset I_{2} \subset I_{3} \subset \cdots \subset I_{n} \subset \cdots,
$$

be an ascending chain of ideals.
(i) Show that the union

$$
I=\bigcup_{n=1}^{\infty} I_{n}
$$

is an ideal.

We have to show that I is non-empty and closed under addition and multiplication by any element of R.
I is clearly non-empty. For example it contains I_{1}, which is non-empty. Suppose that a and b belong to I. Then there are two natural numbers m and n such that $a \in I_{m}$ and $b \in I_{n}$. Let k be the maximum of m and n. Then a and b are elements of I_{k}, as I_{m} and I_{n} are subsets of I_{k}. It follows that $a+b \in I_{k}$, as I_{k} is an ideal and so $a+b \in I$. Finally suppose that $a \in I$ and $r \in R$. Then $a \in I_{n}$, for some n. In this case $r a \in I_{n} \subset I$. Thus I is an ideal.
(ii) Show that $I=R$ if and only if $I_{n}=R$ some $n \in \mathbb{N}$.

One direction is clear. If $I_{n}=R$ then

$$
R=I_{n} \subset I \subset R
$$

so that $I=R$.
Now suppose that $I=R$. Then $1 \in I$. But then $1 \in I_{n}$, some n and so $a=a \cdot 1 \in I$, for any $a \in R$. Thus $I=R$.
6. (15pts) (i) Let I and J be two ideals in a ring R. Show that

$$
\frac{R}{I \cap J}
$$

is isomorphic to a subring of

$$
\frac{R}{I} \oplus \frac{R}{J} .
$$

The natural maps

$$
R \longrightarrow \frac{R}{I} \quad \text { and } \quad R \longrightarrow \frac{R}{J}
$$

induce a ring homomorphism

$$
\phi: R \longrightarrow \frac{R}{I} \oplus \frac{R}{J} \quad \text { given by } \quad r \longrightarrow(r+I, r+J)
$$

We identify the kernel $K=\operatorname{Ker} \phi$. If $r \in I \cap J$ then $r \in I$ and so $r+I=I$. Similarly $r+J=J$ and so $r \in K$. Now suppose that $r \in K$. Then $r+I=I$ and $r+J=J$. As $r+I=I$ it follows that $r \in I$. Similarly $r \in J$. Thus $K=I \cap J$.
Note that the image of ϕ is a subring and that ϕ is surjective onto its image. The first isomorphism theorem implies that

$$
\frac{R}{I \cap J}
$$

is isomorphic to a subring of

$$
\frac{R}{I} \oplus \frac{R}{J} .
$$

(ii) Show that $\mathbb{Z}_{m n}$ and $\mathbb{Z}_{m} \oplus \mathbb{Z}_{n}$ are isomorphic rings if and only if m and n are coprime.

Note that $\mathbb{Z}_{m} \simeq \mathbb{Z} /\langle m\rangle$. It is clear that

$$
\langle m n\rangle \subset\langle m\rangle \cap\langle n\rangle
$$

since a multiple of $m n$ is surely a multiple of m and a multiple of n. Suppose that m and n are coprime and that $a \in\langle m\rangle \cap\langle n\rangle$. Then $a=b m$ and $a=c n$. As m and n are coprime, by Euclid's algorithm, there are two integers r and s such that

$$
1=r m+s n
$$

Multiplying by a, we have

$$
\begin{aligned}
a & =r m a+s n a \\
& =(r c) m n+(s b) m n \\
& =(r c+s b) m n .
\end{aligned}
$$

Thus $a \in\langle m n\rangle$ and so $\langle m n\rangle=\langle m\rangle \cap\langle n\rangle$.
It follows that $\mathbb{Z}_{m n}$ is isomorphic to a subring of $\mathbb{Z}_{m} \oplus \mathbb{Z}_{n}$. But the cardinality of both sides is $m n$ and so $\mathbb{Z}_{m n}$ and $\mathbb{Z}_{m} \oplus \mathbb{Z}_{n}$ are isomorphic rings.
Now suppose that m and not n are not coprime. Then the lowest common multiple l of $m n$ and is less than $m n$.
The characteristic of $\mathbb{Z}_{m n}$ is $m n$ but the characteristic of $\mathbb{Z}_{m} \oplus \mathbb{Z}_{n}$ is at most l, since

$$
l \cdot(1,1)=(l, l)=(0,0)
$$

Thus $\mathbb{Z}_{m n}$ and $\mathbb{Z}_{m} \oplus \mathbb{Z}_{n}$ are not isomorphic.

Bonus Challenge Problems

6. (10pts) Let R be a commutative ring with the property that given $a \in R$ there is a natural number $n>1$ such that $a^{n}=a$.
Show that every prime ideal is maximal.

Let I be a prime ideal. Then the ring R / I is an integral domain. Note that if $x \in R / I$ then $x=a+I$, some $a \in R$ and so there is a natural number $n>1$ such that $x^{n}=x$.
If $x \neq 0$ then we may cancel x as R / I is an integral domain. It follows that $x^{m}=1$, where $m=n-1 \geq 1$. Let $y=x^{l}$, where $l=n-2 \geq 0$. Then

$$
\begin{aligned}
x y & =x x^{l} \\
& =x^{l+1} \\
& =x^{m} \\
& =1 .
\end{aligned}
$$

Thus y is the inverse of x. In particular x is invertible and so R / I is a field.
But then I is maximal.
7. (10pts) Construct a field with 121 elements.

We just mimic the construction in the book and the lecture notes. Let I be the set of Gaussian integers R of the form $a+b i$ where both a and b are divisible by 11 .
It is clear that I is an ideal and $I \neq R$. The quotient ring R / I has 121 elements, since there are eleven possible residues for both the real and imaginary parts. Note that R / I is a field if and only if I is maximal.
We first follow the book. Suppose that $I \subset J$ is an ideal, not equal to I. Then we can find $a+b i \in J$ but not in I. It follows that 11 does not divide at least one of a or b.
Now the possible congruences of a square modulo 11 are $0,1=1^{2}=$ $(10)^{2}, 4=2^{2}=9^{2}$ and $9=3^{2}=8^{2}, 5=4^{2}=7^{2}$ and $3=5^{2}=6^{2}$. It follows that if 11 divides an integer of the form $x^{2}+y^{2}$ then 11 must divide both x and y.
Therefore 11 does not divide $c=a^{2}+b^{2}$. As

$$
c=(a+b i)(a-b i),
$$

it follows that c belongs to J but not to I. As c is coprime to 11 we may find x and y such that

$$
1=x c+11 y
$$

As $11 \in I \subset J$, it follows that $1 \in J$. Thus $J=R$ and so I is maximal. Instead we can follow the lecture notes. We sketch the details. As R / I is finite it is a field if and only if it is an integral domain. But R / I is an integral domain if and only if I is prime.
Suppose that $(a+b i)(c+d i) \in I$ but $a+b i \notin I$. As

$$
(a+b i)(c+d i)=(a c-b d)+(a d+b c) i
$$

11 divides

$$
(j a+b) c-(j b-a) d \quad \text { and } \quad(j a+b) d+(j b-a) c,
$$

and 11 divides

$$
(a+j b) c-(b-j a) d \quad \text { and } \quad(a+j b) d+(b-j a) c,
$$

and the other way around with j switched between a and b.
By assumption 11 does not divide both a and b. In this case 11 divides a but not b, or vice-versa, or the same is true replacing the pair (a, b) by one of $(a+b, b-a),(2 a+b, 2 b-a),(a+2 b, b-2 a),(3 a+b, 3 b-a)$ and $(a+3 b, b-3 a)$. Now finish as in the lecture notes.

