FIRST MIDTERM
MATH 100B, UCSD, WINTER 24

You have 80 minutes.

There are 6 problems, and the total number of
points is 85. Show all your work. Please make
your work as clear and easy to follow as possible.

Problem | Points | Score
Name:
Signature: ! 15
2 10
Student 1D #:
. 3 15
Section instructor:
4 20
Section Time:
5 10
6 15
7 10
8 10
Total 85




1. (15pts) Give the definition of the Gaussian integers.

All complex numbers of the form a + bi where a and b are integers.

(i) Give the definition of a zero divisor.

A non-zero element a of a ring R is a zero divisor if there is a non-zero
element b of R such that either ab = 0 or ba = 0.

(iii) Give the definition of a prime ideal.

Anideal I of aring R is a prime ideal if whenever there are two elements
of R such that ab € I then either a € I or b € I.



2. (10pts) Let R and S be two rings.
(i) Show that R & S is a ring, where addition and multiplication are
defined by

(11, 81)+ (72, 89) = (r1+72, S1+S2) and (11, 81)(re, S2) = (1172, $152).

It was proved in 100A that R & S is an additive group. The element
(1,1) clearly plays the role of the identity. The fact that multiplication
is associative follows similarly to the proof that addition is commuta-
tive. We check the distributive rule. Suppose that z = (a,b), y = (¢, d),
and z = (e, f) € R& S. Then

2(y +2) = (a,0) ((¢,d) + (e, f))
= (a,b)(c+e,d+ f)
= (a(c+e),b(d + [))
= (ac+ ae,bd + bf)
= (ac+ ae,bd + bf)
= (ac, bd) + (ae, bf)
= (a,b)(¢,d) + (a,b)(e, f)
=y + Tz
Similarly the other way around. Thus the distributive law holds.

(ii) Show that the function
¢: RS — R  given by (r,s) —r

is a ring homomorphism.

We already saw in 100A that ¢ is a group homomorphism. ¢(1,1) =1
and so ¢ sends the identity to the identity. Let x = (a,b) and y = (¢, d).
We have

¢($)¢(y) - ¢<a7 b)¢<c7 d)
= ¢(ac, bd)
= ¢((a,d)(c,d))
= ¢(zy).

Thus ¢ is a ring homomorphism.



3. (15pts) (i) Let R be a commutative ring and let a be an element of
R. Prove that the set

{ra|re R}
is an ideal of R.

a=1-a € (a) and so (a) is non-empty. Suppose that x and y belong
to (a). Then we may find r and s € R such that x = ra and y = sa.
In this case

r+y=ra+sa
= (r+s)a € {(a).

Now suppose that s € R and x € (a). Then we may r € R such that
x = ra. In this case

Thus (a) is an ideal.

(ii) Show that a commutative ring R is a field if and only if the only
ideals in R are the zero-ideal {0} and the whole ring R.

Suppose that R is a field and let I be a non-zero ideal of R. Pick a € I,
not equal to zero. As R is a field, a is a unit. Let b be the inverse of a.
Then 1 =ba € I. Now pick r € R. Thenr=r-1¢€ [I. Thus I = R.
Now suppose that R has no non-trivial ideals. Pick a non-zero element
a € R. It suffices to find an inverse of a. Let I be the ideal generated
by a. Then I has the form above. a = 1-a € I. Thus [ is not the
zero ideal. By assumption I = R and so 1 € I. But then 1 = ba, some
b € R and b is the inverse of a. Thus R is field.

(iii) Let ¢: F — R be a ring homomorphism, where F' is a field. Prove
that ¢ s injective.

Let K be the kernel. As ¢(1) =1,1¢ K. As K is an ideal, and F is
field, it follows that K is the zero ideal. But then ¢ is injective.



4. (20pts) (i) Let R be a commutative ring and let I be an ideal. Show
that R/I is an integral domain if and only if I is a prime ideal.

Let a and b be two elements of R and suppose that ab € I, whilst a ¢ 1.
Let t=a+ 1 and y=b+ 1. Then x # I = 0.

zy=(a+1)(b+1)
=ab+ 1
=1=0.

As R/I is an integral domain and x # 0, it follows that b+ I = y = 0.
But then b € I. Hence [ is prime.

Now suppose that [ is prime. Let x and y be two elements of R/I,
such that xy = 0, whilst + # 0. Then = a+ [ and y = b+ [, for
some a and bin R. As zy = I, it follows that ab€ I. Asz # I, a ¢ I.
As I is a prime ideal, it follows that b € I. But then y = b+ 1 = 0.
Thus R/I is an integral domain.

(i) Let R be an integral domain and let I be an ideal. Show that R/I
15 a field if and only if I is a mazximal ideal.

Note that there a surjective ring homomorphism
¢: R— R/I

which sends an element r € R to the left coset r + I. Furthermore
there is a correspondence between ideals J of R/I and ideals K of R
which contain /. Indeed, given an ideal J of R/I, let K be the inverse
image of J. As0 € J, I C K. Given I C K, let J = ¢(I). It is easy
to check that the given maps are inverses of each other. The zero ideal
corresponds to I and R/I corresponds to R. Thus [ is maximal if and
only if R/I only contains the zero ideal and R/1.

On the other hand R/I is a field if and only if the only ideals in R/I
are the zero ideal and the whole of R/I.



5. (10pts) Let R be a ring and let
11CIQC13C"'CInC"'7

be an ascending chain of ideals.

(i) Show that the union
I=\J1
n=1

1s an ideal.

We have to show that [ is non-empty and closed under addition and
multiplication by any element of R.

I is clearly non-empty. For example it contains /1, which is non-empty.
Suppose that a and b belong to I. Then there are two natural numbers
m and n such that a € I,,, and b € I,,. Let k be the maximum of m
and n. Then a and b are elements of I, as I,, and I, are subsets of I}.
It follows that a + b € I, as I is an ideal and so a + b € I. Finally
suppose that a € I and » € R. Then a € I,,, for some n. In this case
ra € I, C I. Thus I is an ideal.

(ii) Show that I = R if and only if I,, = R some n € N.

One direction is clear. If I, = R then
R=I,CICR

so that I = R.
Now suppose that I = R. Then 1 € I. But then 1 € [,,, some n and
soa=a-1€1l, forany a € R. Thus I = R.



6. (15pts) (i) Let I and J be two ideals in a ring R. Show that

R
InJ
s 1somorphic to a subring of
R & R
I J
The natural maps
R — E and R — E

I

induce a ring homomorphism

¢:R—>§@}—j givenby r— (r+1,r+J).

We identify the kernel K = Ker¢. If r € I N J then » € [ and so
r+1 = I. Similarly r4+.J = J and so r € K. Now suppose that r € K.
Thenr+ I =1Tandr+J =J. Asr+ 1 = I it follows that r € I.
Similarly » € J. Thus K =1nNJ.

Note that the image of ¢ is a subring and that ¢ is surjective onto its
image. The first isomorphism theorem implies that

R

In

<

is isomorphic to a subring of

~| =
~l=

D



(ii) Show that Z,, and Zy, & Z,, are isomorphic rings if and only if m
and n are coprime.

Note that Z,, ~ Z/(m). It is clear that

(mn) C (m) N (n)
since a multiple of mn is surely a multiple of m and a multiple of n.
Suppose that m and n are coprime and that a € (m) N (n). Then

a = bm and a = cn. As m and n are coprime, by Euclid’s algorithm,
there are two integers r and s such that

1 =7rm+ sn.
Multiplying by a, we have
a = rma + sna
= (r¢)mn + (sb)mn
= (rc+ sb)mn.
Thus a € (mn) and so (mn) = (m) N (n).
It follows that Z,,, is isomorphic to a subring of Z,, & Z,. But the
cardinality of both sides is mn and so Z,,,, and Z,, ® Z,, are isomorphic
rings.
Now suppose that m and not n are not coprime. Then the lowest
common multiple [ of mn and is less than mn.
The characteristic of Z,,,,, is mn but the characteristic of Z,,, ® Z,, is at
most [, since
[-(1,1) = (I,1) = (0,0).
Thus Z,,, and Z,, & Z,, are not isomorphic.



Bonus Challenge Problems

6. (10pts) Let R be a commutative ring with the property that given
a € R there is a natural number n > 1 such that a™ = a.

Show that every prime ideal is mazimal.

Let I be a prime ideal. Then the ring R/I is an integral domain. Note
that if z € R/I then © = a + I, some a € R and so there is a natural
number n > 1 such that 2" = x.

If  # 0 then we may cancel z as R/I is an integral domain. It follows
that 2™ =1, where m =n —1> 1. Let y = 2!, where [ =n — 2 > 0.
Then

zy = xa!

— lerl

m

=1.

Thus y is the inverse of z. In particular x is invertible and so R/ is a
field.

But then I is maximal.



7. (10pts) Construct a field with 121 elements.

We just mimic the construction in the book and the lecture notes. Let
I be the set of Gaussian integers R of the form a+ bi where both a and
b are divisible by 11.

It is clear that I is an ideal and I # R. The quotient ring R/I has 121
elements, since there are eleven possible residues for both the real and
imaginary parts. Note that R/ is a field if and only if I is maximal.
We first follow the book. Suppose that I C J is an ideal, not equal to
I. Then we can find a + bi € J but not in I. It follows that 11 does
not divide at least one of a or b.

Now the possible congruences of a square modulo 11 are 0, 1 = 12 =
(1002, 4=22=92and 9=32=8%5=4>=72and 3 = 5% = 6% It
follows that if 11 divides an integer of the form z? 4 y? then 11 must
divide both x and y.

Therefore 11 does not divide ¢ = a? + b?. As

c=(a+bi)(a—bi),
it follows that ¢ belongs to J but not to I. As ¢ is coprime to 11 we
may find x and y such that
1 =zc+ 11y.

As 11 € I C J, it follows that 1 € J. Thus J = R and so [ is maximal.
Instead we can follow the lecture notes. We sketch the details. As R/I
is finite it is a field if and only if it is an integral domain. But R/ is
an integral domain if and only if I is prime.

Suppose that (a + bi)(c+di) € I but a +bi ¢ I. As

(a+ bi)(c+ di) = (ac — bd) + (ad + be)i,

11 divides

(ja+0b)c—(jb—a)d and  (ja+b)d+ (jb— a)c,
and 11 divides

(a+ jb)c — (b—ja)d  and (a4 gb)d + (b—ja)c,
and the other way around with j switched between a and b.
By assumption 11 does not divide both a and b. In this case 11 divides
a but not b, or vice-versa, or the same is true replacing the pair (a, b)

by one of (a+b,b—a), (2a+b,2b—a), (a+2b,b—2a), (3a+b,3b—a)
and (a + 3b,b — 3a). Now finish as in the lecture notes.



