
FIRST MIDTERM

MATH 100B, UCSD, WINTER 24

You have 80 minutes.

There are 6 problems, and the total number of

points is 85. Show all your work. Please make

your work as clear and easy to follow as possible.

Name:

Signature:

Student ID #:

Section instructor:

Section Time:

Problem Points Score

1 15

2 10

3 15

4 20

5 10

6 15

7 10

8 10

Total 85
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1. (15pts) Give the definition of the Gaussian integers.

All complex numbers of the form a+ bi where a and b are integers.

(ii) Give the definition of a zero divisor.

A non-zero element a of a ring R is a zero divisor if there is a non-zero
element b of R such that either ab = 0 or ba = 0.

(iii) Give the definition of a prime ideal.

An ideal I of a ring R is a prime ideal if whenever there are two elements
of R such that ab ∈ I then either a ∈ I or b ∈ I.
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2. (10pts) Let R and S be two rings.

(i) Show that R ⊕ S is a ring, where addition and multiplication are

defined by

(r1, s1)+(r2, s2) = (r1+r2, s1+s2) and (r1, s1)(r2, s2) = (r1r2, s1s2).

It was proved in 100A that R ⊕ S is an additive group. The element
(1, 1) clearly plays the role of the identity. The fact that multiplication
is associative follows similarly to the proof that addition is commuta-
tive. We check the distributive rule. Suppose that x = (a, b), y = (c, d),
and z = (e, f) ∈ R⊕ S. Then

x(y + z) = (a, b) ((c, d) + (e, f))

= (a, b)(c+ e, d+ f)

= (a(c+ e), b(d+ f))

= (ac+ ae, bd+ bf)

= (ac+ ae, bd+ bf)

= (ac, bd) + (ae, bf)

= (a, b)(c, d) + (a, b)(e, f)

= xy + xz.

Similarly the other way around. Thus the distributive law holds.

(ii) Show that the function

φ : R⊕ S −→ R given by (r, s) −→ r

is a ring homomorphism.

We already saw in 100A that φ is a group homomorphism. φ(1, 1) = 1
and so φ sends the identity to the identity. Let x = (a, b) and y = (c, d).
We have

φ(x)φ(y) = φ(a, b)φ(c, d)

= ac

= φ(ac, bd)

= φ((a, d)(c, d))

= φ(xy).

Thus φ is a ring homomorphism.
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3. (15pts) (i) Let R be a commutative ring and let a be an element of

R. Prove that the set

{ ra | r ∈ R }

is an ideal of R.

a = 1 · a ∈ 〈a〉 and so 〈a〉 is non-empty. Suppose that x and y belong
to 〈a〉. Then we may find r and s ∈ R such that x = ra and y = sa.
In this case

x+ y = ra+ sa

= (r + s)a ∈ 〈a〉.

Now suppose that s ∈ R and x ∈ 〈a〉. Then we may r ∈ R such that
x = ra. In this case

sx = s(ra)

= (sr)a ∈ 〈a〉.

Thus 〈a〉 is an ideal.

(ii) Show that a commutative ring R is a field if and only if the only

ideals in R are the zero-ideal {0} and the whole ring R.

Suppose that R is a field and let I be a non-zero ideal of R. Pick a ∈ I,
not equal to zero. As R is a field, a is a unit. Let b be the inverse of a.
Then 1 = ba ∈ I. Now pick r ∈ R. Then r = r · 1 ∈ I. Thus I = R.
Now suppose that R has no non-trivial ideals. Pick a non-zero element
a ∈ R. It suffices to find an inverse of a. Let I be the ideal generated
by a. Then I has the form above. a = 1 · a ∈ I. Thus I is not the
zero ideal. By assumption I = R and so 1 ∈ I. But then 1 = ba, some
b ∈ R and b is the inverse of a. Thus R is field.

(iii) Let φ : F −→ R be a ring homomorphism, where F is a field. Prove

that φ is injective.

Let K be the kernel. As φ(1) = 1, 1 /∈ K. As K is an ideal, and F is
field, it follows that K is the zero ideal. But then φ is injective.
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4. (20pts) (i) Let R be a commutative ring and let I be an ideal. Show

that R/I is an integral domain if and only if I is a prime ideal.

Let a and b be two elements of R and suppose that ab ∈ I, whilst a /∈ I.
Let x = a+ I and y = b+ I. Then x 6= I = 0.

xy = (a+ I)(b+ I)

= ab+ I

= I = 0.

As R/I is an integral domain and x 6= 0, it follows that b+ I = y = 0.
But then b ∈ I. Hence I is prime.
Now suppose that I is prime. Let x and y be two elements of R/I,
such that xy = 0, whilst x 6= 0. Then x = a + I and y = b + I, for
some a and b in R. As xy = I, it follows that ab ∈ I. As x 6= I, a /∈ I.
As I is a prime ideal, it follows that b ∈ I. But then y = b + I = 0.
Thus R/I is an integral domain.

(ii) Let R be an integral domain and let I be an ideal. Show that R/I
is a field if and only if I is a maximal ideal.

Note that there a surjective ring homomorphism

φ : R −→ R/I

which sends an element r ∈ R to the left coset r + I. Furthermore
there is a correspondence between ideals J of R/I and ideals K of R
which contain I. Indeed, given an ideal J of R/I, let K be the inverse
image of J . As 0 ∈ J , I ⊂ K. Given I ⊂ K, let J = φ(I). It is easy
to check that the given maps are inverses of each other. The zero ideal
corresponds to I and R/I corresponds to R. Thus I is maximal if and
only if R/I only contains the zero ideal and R/I.
On the other hand R/I is a field if and only if the only ideals in R/I
are the zero ideal and the whole of R/I.
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5. (10pts) Let R be a ring and let

I1 ⊂ I2 ⊂ I3 ⊂ · · · ⊂ In ⊂ · · · ,

be an ascending chain of ideals.
(i) Show that the union

I =
∞⋃

n=1

In

is an ideal.

We have to show that I is non-empty and closed under addition and
multiplication by any element of R.
I is clearly non-empty. For example it contains I1, which is non-empty.
Suppose that a and b belong to I. Then there are two natural numbers
m and n such that a ∈ Im and b ∈ In. Let k be the maximum of m
and n. Then a and b are elements of Ik, as Im and In are subsets of Ik.
It follows that a + b ∈ Ik, as Ik is an ideal and so a + b ∈ I. Finally
suppose that a ∈ I and r ∈ R. Then a ∈ In, for some n. In this case
ra ∈ In ⊂ I. Thus I is an ideal.

(ii) Show that I = R if and only if In = R some n ∈ N.

One direction is clear. If In = R then

R = In ⊂ I ⊂ R

so that I = R.
Now suppose that I = R. Then 1 ∈ I. But then 1 ∈ In, some n and
so a = a · 1 ∈ I, for any a ∈ R. Thus I = R.
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6. (15pts) (i) Let I and J be two ideals in a ring R. Show that

R

I ∩ J
is isomorphic to a subring of

R

I
⊕

R

J
.

The natural maps

R −→
R

I
and R −→

R

J
induce a ring homomorphism

φ : R −→
R

I
⊕

R

J
given by r −→ (r + I, r + J).

We identify the kernel K = Kerφ. If r ∈ I ∩ J then r ∈ I and so
r+I = I. Similarly r+J = J and so r ∈ K. Now suppose that r ∈ K.
Then r + I = I and r + J = J . As r + I = I it follows that r ∈ I.
Similarly r ∈ J . Thus K = I ∩ J .
Note that the image of φ is a subring and that φ is surjective onto its
image. The first isomorphism theorem implies that

R

I ∩ J
is isomorphic to a subring of

R

I
⊕

R

J
.
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(ii) Show that Zmn and Zm ⊕ Zn are isomorphic rings if and only if m
and n are coprime.

Note that Zm ' Z/〈m〉. It is clear that

〈mn〉 ⊂ 〈m〉 ∩ 〈n〉

since a multiple of mn is surely a multiple of m and a multiple of n.
Suppose that m and n are coprime and that a ∈ 〈m〉 ∩ 〈n〉. Then
a = bm and a = cn. As m and n are coprime, by Euclid’s algorithm,
there are two integers r and s such that

1 = rm+ sn.

Multiplying by a, we have

a = rma+ sna

= (rc)mn+ (sb)mn

= (rc+ sb)mn.

Thus a ∈ 〈mn〉 and so 〈mn〉 = 〈m〉 ∩ 〈n〉.
It follows that Zmn is isomorphic to a subring of Zm ⊕ Zn. But the
cardinality of both sides is mn and so Zmn and Zm⊕Zn are isomorphic
rings.
Now suppose that m and not n are not coprime. Then the lowest
common multiple l of mn and is less than mn.
The characteristic of Zmn is mn but the characteristic of Zm⊕Zn is at
most l, since

l · (1, 1) = (l, l) = (0, 0).

Thus Zmn and Zm ⊕ Zn are not isomorphic.
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Bonus Challenge Problems

6. (10pts) Let R be a commutative ring with the property that given

a ∈ R there is a natural number n > 1 such that an = a.
Show that every prime ideal is maximal.

Let I be a prime ideal. Then the ring R/I is an integral domain. Note
that if x ∈ R/I then x = a + I, some a ∈ R and so there is a natural
number n > 1 such that xn = x.
If x 6= 0 then we may cancel x as R/I is an integral domain. It follows
that xm = 1, where m = n − 1 ≥ 1. Let y = xl, where l = n − 2 ≥ 0.
Then

xy = xxl

= xl+1

= xm

= 1.

Thus y is the inverse of x. In particular x is invertible and so R/I is a
field.
But then I is maximal.
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7. (10pts) Construct a field with 121 elements.

We just mimic the construction in the book and the lecture notes. Let
I be the set of Gaussian integers R of the form a+ bi where both a and
b are divisible by 11.
It is clear that I is an ideal and I 6= R. The quotient ring R/I has 121
elements, since there are eleven possible residues for both the real and
imaginary parts. Note that R/I is a field if and only if I is maximal.
We first follow the book. Suppose that I ⊂ J is an ideal, not equal to
I. Then we can find a + bi ∈ J but not in I. It follows that 11 does
not divide at least one of a or b.
Now the possible congruences of a square modulo 11 are 0, 1 = 12 =
(10)2, 4 = 22 = 92 and 9 = 32 = 82, 5 = 42 = 72 and 3 = 52 = 62. It
follows that if 11 divides an integer of the form x2 + y2 then 11 must
divide both x and y.
Therefore 11 does not divide c = a2 + b2. As

c = (a+ bi)(a− bi),

it follows that c belongs to J but not to I. As c is coprime to 11 we
may find x and y such that

1 = xc+ 11y.

As 11 ∈ I ⊂ J , it follows that 1 ∈ J . Thus J = R and so I is maximal.
Instead we can follow the lecture notes. We sketch the details. As R/I
is finite it is a field if and only if it is an integral domain. But R/I is
an integral domain if and only if I is prime.
Suppose that (a+ bi)(c+ di) ∈ I but a+ bi /∈ I. As

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i,

11 divides

(ja+ b)c− (jb− a)d and (ja+ b)d+ (jb− a)c,

and 11 divides

(a+ jb)c− (b− ja)d and (a+ jb)d+ (b− ja)c,

and the other way around with j switched between a and b.
By assumption 11 does not divide both a and b. In this case 11 divides
a but not b, or vice-versa, or the same is true replacing the pair (a, b)
by one of (a+ b, b− a), (2a+ b, 2b− a), (a+2b, b− 2a), (3a+ b, 3b− a)
and (a+ 3b, b− 3a). Now finish as in the lecture notes.
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