
8. Polynomial rings

Let us now turn out attention to determining the prime elements
of a polynomial ring, where the coefficient ring is a field. We already
know that such a polynomial ring is a UFD. Therefore to determine
the prime elements, it suffices to determine the irreducible elements.

We start with some basic facts about polynomial rings.

Lemma 8.1. Let R be an integral domain.
Then the invertible elements of R[x] are precisely the invertible ele-

ments of R.

Proof. One direction is clear. An invertible element of R is an invertible
element of R[x].

Now suppose that f(x) is a invertible elements of R[x]. Given a
polynomial g, denote by d(g) the degree of g(x) (note that we are not
claiming that R[x] is a Euclidean domain). Now f(x)g(x) = 1. Thus

0 = d(1)

= d(fg)

≥ d(f) + d(g).

Thus both of f and g must have degree zero. It follows that f(x) = f0
and that f0 is an invertible element of R. �

Lemma 8.2. Let R be a ring. The natural inclusion

R −→ R[x]

which just sends an element r ∈ R to the constant polynomial r, is a
ring homomorphism.

Proof. Easy. �

The following universal property of polynomial rings is very useful.

Lemma 8.3. Let
φ : R −→ S

be any ring homomorphism and let a ∈ S be any element of S.
Then there is a unique ring homomorphism

ψ : R[x] −→ S,

such that ψ(x) = a and which makes the following diagram commute

R
φ - S

R[x]
?

∩

ψ
-
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Proof. Note that any ring homomorphism

ψ : R[x] −→ S

that sends x to a and acts as φ on the coefficients, must send

anx
n + an−1x

n−1 + · · ·+ a0

to
φ(an)an + φ(an−1)a

n−1 + · · ·+ φ(a0).

Thus it suffices to check that the given map is a ring homomorphism,
which is left as an exercise for the reader. �

Definition 8.4. Let R be a ring and let α be an element of R. The
natural ring homomorphism

φ : R[x] −→ R,

which acts as the identity on R and which sends x to α, is called eval-
uation at α and is often denoted evα.

We say that α is a root of f(x), if f(x) is in the kernel of evα.

Roots are also known as zeroes of f(x).

Lemma 8.5. Let K be a field and let α be an element of K.
Then the kernel of evα is the ideal 〈x− α〉.

Proof. Denote by I the kernel of evα
Clearly x−α is in I. On the other hand, K[x] is a Euclidean domain,

and so it is certainly a PID. Thus I is principal. Suppose it is generated
by f , so that I = 〈f〉. Then f divides x−α. If f has degree one, then
x− α must be an associate of f and the result follows. If f has degree
zero, then it must be a constant. As f has a root at α, in fact this
constant must be zero, a contradiction. �

Lemma 8.6. Let K be a field and let f(x) be a polynomial in K[x].
Then we can write f(x) = g(x)h(x) where g(x) is a polynomial of

degree one if and only if f(x) has a root in K.

Proof. First note that a polynomial of degree one always has a root in
K. Indeed any polynomial of degree one is of the form ax + b, where
a 6= 0. Then it is easy to see that α = − b

a
is a root of ax+ b.

On the other hand, the kernel of the evaluation map is an ideal, so
that if g(x) has a root α, then in fact so does f(x) = g(x)h(x). Thus
if we can write f(x) = g(x)h(x), where g(x) has degree one, then it
follows that f(x) must have a root.

Now suppose that f(x) has a root at α. Consider the polynomial
g(x) = x − α. Then the kernel of evα is equal to 〈x − α〉. As f is in
the kernel, f(x) = g(x)h(x), for some h(x) ∈ R[x]. �
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Lemma 8.7. Let K be a field and let f(x) be a polynomial of degree
two or three.

Then f(x) is irreducible if and only if it has no roots in K.

Proof. If f(x) has a root in K, then f(x) = g(x)h(x), where g(x) has
degree one, by (8.6). As the degree of f is at least two, it follows that
h(x) has degree at least one. Thus f(x) is not irreducible.

Now suppose that f(x) is not irreducible. Then f(x) = g(x)h(x),
where neither g nor h is invertible. Thus both g and h have degree at
least one. As the sum of the degrees of g and h is at most three, the
degree of f , it follows that one of g and h has degree one. Now apply
(8.6). �

Definition 8.8. Let p be a prime.
Fp denotes the unique field with p elements.

Of course, Fp is isomorphic to Zp. However, as we will see later, it
is useful to replace Z by F .

Example 8.9. First consider the polynomial x2 + 1.

Over the real numbers this is irreducible. Indeed, if we replace x by
any real number a, then a2 is positive and so a2 + 1 cannot equal zero.

On the other hand ±i is a root of x2 + 1, as i2 + 1 = 0. Thus x2 + 1
is reducible over the complex numbers. Indeed x2 + 1 = (x+ i)(x− i).
Thus an irreducible polynomial might well become reducible over a
larger field.

Example 8.10. Consider the polynomial x2 + x+ 1.

We consider this over various fields. As observed in (8.7) this is
reducible if and only if it has a root in the given field.

Suppose we work over the field F5. We need to check if the five
elements of F5 are roots or not. We have

12 + 1 + 1 = 3 22 + 2 + 1 = 2 32 + 3 + 1 = 3 42 + 4 + 1 = 1

Thus this is irreducible over F5. Now consider what happens over the
field with three elements F3. Then 1 is a root of this polynomial. As
neither 0 nor 2 are roots, we must have

x2 + x+ 1 = (x− 1)2 = (x+ 2)2,

which is easy to check.

Example 8.11. Now let us determine all irreducible polynomials of
degree at most four over F2.
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Any linear polynomial is irreducible. There are two such x and x+1.
A general quadratic has the form f(x) = x2 + ax + b. b 6= 0, else x
divides f(x). Thus b = 1. If a = 0, then f(x) = x2 + 1, which has 1 as
a zero. Thus f(x) = x2 + x+ 1 is the only irreducible quadratic.

Now suppose that we have an irreducible cubic f(x) = x3+ax+bx+1.
This is irreducible if and only if f(1) 6= 0, which is the same as to say
that there are an odd number of terms. Thus the irreducible cubics are
f(x) = x3 + x2 + 1 and x3 + x+ 1.

Finally suppose that f(x) is a quartic polynomial. The general irre-
ducible is of the form x4 + ax3 + bx2 + cx + 1. f(1) 6= 0 is the same
as to say that either two of a, b and c are equal to zero or they are all
equal to one. Suppose that

f(x) = g(x)h(x).

If f(x) does not have a root, then both g and h must have degree two.
If either g or h were reducible, then again f would have a linear factor,
and therefore a root. Thus the only possibilty is that both g and h are
the unique irreducible quadratic polynomials.

In this case

f(x) = (x2 + x+ 1)2 = x4 + x2 + 1.

Thus x4 + x3 + x2 + x+ 1, x4 + x3 + 1, and x4 + x+ 1 are the three
irreducible quartics.
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