8. Polynomial Rings

Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UFD. Therefore to determine the prime elements, it suffices to determine the irreducible elements.

We start with some basic facts about polynomial rings.
Lemma 8.1. Let R be an integral domain.
Then the invertible elements of $R[x]$ are precisely the invertible elements of R.

Proof. One direction is clear. An invertible element of R is an invertible element of $R[x]$.

Now suppose that $f(x)$ is a invertible elements of $R[x]$. Given a polynomial g, denote by $d(g)$ the degree of $g(x)$ (note that we are not claiming that $R[x]$ is a Euclidean domain). Now $f(x) g(x)=1$. Thus

$$
\begin{aligned}
0 & =d(1) \\
& =d(f g) \\
& \geq d(f)+d(g) .
\end{aligned}
$$

Thus both of f and g must have degree zero. It follows that $f(x)=f_{0}$ and that f_{0} is an invertible element of R.
Lemma 8.2. Let R be a ring. The natural inclusion

$$
R \longrightarrow R[x]
$$

which just sends an element $r \in R$ to the constant polynomial r, is a ring homomorphism.
Proof. Easy.
The following universal property of polynomial rings is very useful.
Lemma 8.3. Let

$$
\phi: R \longrightarrow S
$$

be any ring homomorphism and let $a \in S$ be any element of S.
Then there is a unique ring homomorphism

$$
\psi: R[x] \longrightarrow S
$$

such that $\psi(x)=a$ and which makes the following diagram commute

Proof. Note that any ring homomorphism

$$
\psi: R[x] \longrightarrow S
$$

that sends x to a and acts as ϕ on the coefficients, must send

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}
$$

to

$$
\phi\left(a_{n}\right) a^{n}+\phi\left(a_{n-1}\right) a^{n-1}+\cdots+\phi\left(a_{0}\right) .
$$

Thus it suffices to check that the given map is a ring homomorphism, which is left as an exercise for the reader.

Definition 8.4. Let R be a ring and let α be an element of R. The natural ring homomorphism

$$
\phi: R[x] \longrightarrow R,
$$

which acts as the identity on R and which sends x to α, is called evaluation at α and is often denoted ev_{α}.

We say that α is a root of $f(x)$, if $f(x)$ is in the kernel of ev_{α}.
Roots are also known as zeroes of $f(x)$.
Lemma 8.5. Let K be a field and let α be an element of K.
Then the kernel of ev_{α} is the ideal $\langle x-\alpha\rangle$.
Proof. Denote by I the kernel of ev_{α}
Clearly $x-\alpha$ is in I. On the other hand, $K[x]$ is a Euclidean domain, and so it is certainly a PID. Thus I is principal. Suppose it is generated by f, so that $I=\langle f\rangle$. Then f divides $x-\alpha$. If f has degree one, then $x-\alpha$ must be an associate of f and the result follows. If f has degree zero, then it must be a constant. As f has a root at α, in fact this constant must be zero, a contradiction.

Lemma 8.6. Let K be a field and let $f(x)$ be a polynomial in $K[x]$.
Then we can write $f(x)=g(x) h(x)$ where $g(x)$ is a polynomial of degree one if and only if $f(x)$ has a root in K.

Proof. First note that a polynomial of degree one always has a root in K. Indeed any polynomial of degree one is of the form $a x+b$, where $a \neq 0$. Then it is easy to see that $\alpha=-\frac{b}{a}$ is a root of $a x+b$.

On the other hand, the kernel of the evaluation map is an ideal, so that if $g(x)$ has a root α, then in fact so does $f(x)=g(x) h(x)$. Thus if we can write $f(x)=g(x) h(x)$, where $g(x)$ has degree one, then it follows that $f(x)$ must have a root.

Now suppose that $f(x)$ has a root at α. Consider the polynomial $g(x)=x-\alpha$. Then the kernel of ev_{α} is equal to $\langle x-\alpha\rangle$. As f is in the kernel, $f(x)=g(x) h(x)$, for some $h(x) \in R[x]$.

Lemma 8.7. Let K be a field and let $f(x)$ be a polynomial of degree two or three.

Then $f(x)$ is irreducible if and only if it has no roots in K.
Proof. If $f(x)$ has a root in K, then $f(x)=g(x) h(x)$, where $g(x)$ has degree one, by (8.6). As the degree of f is at least two, it follows that $h(x)$ has degree at least one. Thus $f(x)$ is not irreducible.

Now suppose that $f(x)$ is not irreducible. Then $f(x)=g(x) h(x)$, where neither g nor h is invertible. Thus both g and h have degree at least one. As the sum of the degrees of g and h is at most three, the degree of f, it follows that one of g and h has degree one. Now apply (8.6).

Definition 8.8. Let p be a prime.
\mathbb{F}_{p} denotes the unique field with p elements.
Of course, \mathbb{F}_{p} is isomorphic to \mathbb{Z}_{p}. However, as we will see later, it is useful to replace Z by F.

Example 8.9. First consider the polynomial $x^{2}+1$.
Over the real numbers this is irreducible. Indeed, if we replace x by any real number a, then a^{2} is positive and so $a^{2}+1$ cannot equal zero.

On the other hand $\pm i$ is a root of $x^{2}+1$, as $i^{2}+1=0$. Thus $x^{2}+1$ is reducible over the complex numbers. Indeed $x^{2}+1=(x+i)(x-i)$. Thus an irreducible polynomial might well become reducible over a larger field.

Example 8.10. Consider the polynomial $x^{2}+x+1$.
We consider this over various fields. As observed in (8.7) this is reducible if and only if it has a root in the given field.

Suppose we work over the field \mathbb{F}_{5}. We need to check if the five elements of \mathbb{F}_{5} are roots or not. We have

$$
1^{2}+1+1=3 \quad 2^{2}+2+1=2 \quad 3^{2}+3+1=3 \quad 4^{2}+4+1=1
$$

Thus this is irreducible over \mathbb{F}_{5}. Now consider what happens over the field with three elements \mathbb{F}_{3}. Then 1 is a root of this polynomial. As neither 0 nor 2 are roots, we must have

$$
x^{2}+x+1=(x-1)^{2}=(x+2)^{2}
$$

which is easy to check.
Example 8.11. Now let us determine all irreducible polynomials of degree at most four over \mathbb{F}_{2}.

Any linear polynomial is irreducible. There are two such x and $x+1$. A general quadratic has the form $f(x)=x^{2}+a x+b . \quad b \neq 0$, else x divides $f(x)$. Thus $b=1$. If $a=0$, then $f(x)=x^{2}+1$, which has 1 as a zero. Thus $f(x)=x^{2}+x+1$ is the only irreducible quadratic.

Now suppose that we have an irreducible cubic $f(x)=x^{3}+a x+b x+1$. This is irreducible if and only if $f(1) \neq 0$, which is the same as to say that there are an odd number of terms. Thus the irreducible cubics are $f(x)=x^{3}+x^{2}+1$ and $x^{3}+x+1$.

Finally suppose that $f(x)$ is a quartic polynomial. The general irreducible is of the form $x^{4}+a x^{3}+b x^{2}+c x+1 . f(1) \neq 0$ is the same as to say that either two of a, b and c are equal to zero or they are all equal to one. Suppose that

$$
f(x)=g(x) h(x) .
$$

If $f(x)$ does not have a root, then both g and h must have degree two. If either g or h were reducible, then again f would have a linear factor, and therefore a root. Thus the only possibilty is that both g and h are the unique irreducible quadratic polynomials.

In this case

$$
f(x)=\left(x^{2}+x+1\right)^{2}=x^{4}+x^{2}+1 .
$$

Thus $x^{4}+x^{3}+x^{2}+x+1, x^{4}+x^{3}+1$, and $x^{4}+x+1$ are the three irreducible quartics.

