
6. Special Domains

Let R be an integral domain. Recall that an element p 6= 0, of R is
said to be prime, if the corresponding principal ideal 〈p〉 is prime (so
that p is not invertible).

Definition 6.1. Let a and b be two elements of an integral domain.
We say that a divides b and write a|b if there is an element q such
that b = qa. We say that a and b are associates if a divides b and b
divides a.

Example 6.2. Let R = Z. Then 2|6. Indeed 6 = 3 · 2. Moreover 3
and −3 are associates.

Let R be an integral domain. Note some obvious facts. Every ele-
ment a of R divides 0. Indeed 0 = 0 · a. On the other hand, 0 only
divides 0. Indeed if a = q · 0, then a = 0 (obvious!). Finally if u is
invertible it divides any other element a. Indeed if v ∈ R such that
uv = 1 then a = a · 1 = (av)u.

It is useful to also record the following easy:

Lemma 6.3. Let R be an integral domain and let a and b be two
elements of R.

The following are equivalent:

(1) a divides b.
(2) b ∈ 〈a〉.
(3) 〈b〉 ⊂ 〈a〉.

Proof. Note that (1) holds if and only if b = qa for some q. Thus (1)
and (2) are equivalent.

(3) certainly implies (2), since b = 1 · b ∈ 〈b〉. On the other hand,
(2) implies (3), since 〈b〉 is the smallest ideal containing b and the ideal
〈a〉 contains b. �

Lemma 6.4. Let R be an integral domain and let p ∈ R.
Then p is prime if and only if p is not invertible and whenever p

divides ab then either p divides a or p divides b, where a and b are
elements of R.

Proof. Suppose that p is prime and p divides ab. Let I = 〈p〉. Then
ab ∈ I. As p is prime, then I is prime by definition. Thus either a ∈ I
or b ∈ I. But then either p|a or p|b. Thus if p is prime and p|ab then
either p|a or p|b. The reverse implication is just as easy. �

Lemma 6.5. Let R be an integral domain and let a and b be two non-
zero elements of R.

The following are equivalent:
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(1) a and b are associates.
(2) a = ub for some invertible u.
(3) 〈a〉 = 〈b〉.

Proof. The equivalence of (1) and (3) follows from the equivalence of
(1) and (3) of (6.3).

If a = ub then 〈a〉 ⊂ 〈b〉, again by (6.3). But if vu = 1 then

b = 1 · b = (vu)b = va.

so that 〈b〉 ⊂ 〈a〉. Thus (2) implies (3).
Now suppose that a and b are associates. As b divides a we may find

q such that a = qb. As a divides b we may find p such that b = pa. In
this case

b = pa

= p(qb)

= (pq)b.

Cancelling, we get that pq = 1. Thus p and q are invertible. Hence (1)
implies (2). �

Definition 6.6. Let R be an integral domain.
We say that R is a unique factorisation domain (abbreviated to

UFD) if every non-zero element a of R, which is not invertible, has a
factorisation into a product of primes,

p1p2p3 · · · pk,
which is unique up to order and associates.

The last statement is equivalent to saying that if we can find two
factorisations of a,

p1p2p3 · · · pk = q1q2q3 · · · ql.
where pi and qj are prime, then k = l, and up to re-ordering of
q1, q2, . . . , ql, pi and qi are associates.

Example 6.7. Of course, by the Fundamental Theorem of Arithmetic,
Z is a UFD.

In this case case the prime elements of Z are the ordinary primes and
their inverses. For example, suppose we look at the prime factorisation
of 120. One possibility, the standard one, is

23 · 3 · 5.
However another possibility is

−5 · 3 · (−2)3.
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The point is that in an arbitrary ring there is no standard choice of
associate. On the other hand, every non-zero integer has two associates,
and it is customary to favour the positive one.

Consider the problem of starting with a ring R and proving that R is
a UFD. Obviously this consists of two steps. The first is to start with
an element a of R and express it as a product of primes. We call this
existence. The next step is to prove that this factorisation is unique.
We call this uniqueness.

Let us consider the first step, that is, existence of a factorisation.
How do we write any integer as a product of primes? Well there is
an obvious way to proceed. Try to factorise the integer. If you can,
then work with both factors and if you cannot then you already have
a prime.

Unfortunately this approach hides one nasty subtlety.

Definition 6.8. Let R be a ring and let a ∈ R be a non-zero element
of R which is not invertible. We say that a is irreducible if whenever
a = bc, then either b or c is invertible.

Equivalently, a is irreducible if and only if whenever b divides a, then
b is either invertible or an associate of a. Clearly every prime element
a of an integral domain R is automatically irreducible. The subtlety
that arises is that in an arbitrary integral domain there are irreducible
elements that are not prime. On the other hand, unless the ring is
very pathological indeed, it is quite easy to prove that every non-zero
element of a ring is a product of irreducibles, in fact using the method
outlined above. The only issue is that the natural process outlined
above terminates in a finite number of steps.

Before we go into this deeper, we need a basic definition, concerning
partially ordered sets.

Definition 6.9. Let X be a set. A partial order on X is a reflexive
and transitive relation on X ×X. It is customary to denote a partial
order ≤. The fact that ≤ is reflexive is equivalent to x ≤ x, asymmetry
means that if x ≤ y and y ≤ x then x = y and the fact ≤ is transitive
is equivalent to

a ≤ b and b ≤ c implies a ≤ c.

We also require that if x ≤ y and y ≤ x then x = y (this is known as
asymmetry).

We say that X satisfies the ascending chain condition (ACC) if every
infinite increasing chain

x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn ≤ · · ·
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eventually stabilises, that is, there is an n0 such that xn = xm for every
n and m at least n0.

Note that, in the definition of a partial order, we do not require
that every two elements of X are comparable. In fact if every pair of
elements are comparable, that is, for every x and y ∈ X, either x ≤ y
of y ≤ x, then we say that our partial order is a total order.

There is a similar notion for descending chains, knows as the de-
scending chain condition, or DCC for short.

Example 6.10. Every finite set with a partial order satisfies ACC and
DCC for obvious reasons.

Let X be a subset of the real numbers with the obvious relation.
Then X is a partially ordered set (totally ordered, even). The set

X = { 1

n
|n ∈ N } = {1, 1

2
,
1

3
,
1

4
, . . . },

satisfies ACC but it clearly does not satisfy DCC.
Let Y be a set and let X be a subset of the power set of Y , so that

X is a collection of subsets of Y . Define a relation ≤ by the rule,

A ≤ B if and only if A ⊂ B.

In the case that X is the whole power set of Y , note that ≤ is not a
total order, provided that Y has at least two elements a and b, since in
this case A = {a} and B = {b} are incomparable.

Factorisation Algorithm Let R be an integral domain and let a be
a non-zero element of R that is not invertible. Consider the follow-
ing algorithm, that produces a, possibly infinite, pair of sequences of
elements a1, a2, . . . and b1, b2, . . . of R, where ai = ai+1bi+1 and nei-
ther ai nor bi is invertible. Suppose that we have already produced
a1, a2, . . . , ak and b1, b2, . . . , bk.

(1) If ak and bk are both irreducible then STOP.
(2) Otherwise, possibly switching ak and bk we may assume that

ak is not irreducible. Then we may write ak = ak+1bk+1, where
neither ak+1 nor bk+1 are invertible. GOTO (1).

Proposition 6.11. Let R be an integral domain.
The following are equivalent:

(1) The factorisation algorithm above terminates, starting with any
non-zero element a of the ring R and pursuing all possible ways
of factorising a. In particular, every non-zero element a of R
is either invertible or a product of irreducibles.
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(2) The set of principal ideals satisfies ACC. That is, every increas-
ing chain

〈a1〉 ⊂ 〈a2〉 ⊂ 〈a3〉 ⊂ · · · ⊂ 〈an〉 ⊂ · · ·

eventually stabilises.

Proof. Suppose we have a strictly increasing sequence of principal ideals
as in (2). We will find an a such that the factorisation algorithm does
not terminate.

Note that a principal ideal 〈a〉 = R if and only if a is invertible.
As the sequence of ideals in (2) is increasing, then no ideal can be the
whole of R. Thus none of the ai are invertibles. As ai ∈ 〈ai+1〉, we
may find bi+1 such that ai = bi+1ai+1. But bi+1 cannot be invertible as
〈ai〉 6= 〈ai+1〉. Thus the factorisation algorithm, with a = a1 does not
terminate. Thus (1) implies (2).

The reverse implication follows similarly. �

Lemma 6.12. Let R be a ring and let

I1 ⊂ I2 ⊂ I3 ⊂ · · · ⊂ In ⊂ · · · ,

be an ascending sequence of ideals.
Then the union I of these ideals is an ideal.

Proof. We have to show that I is non-empty and closed under addition
and multiplication by any element of R.

I is clearly non-empty. For example it contains I1, which is non-
empty. Suppose that a and b belong to I. Then there are two natural
numbers m and n such that a ∈ Im and b ∈ In. Let k be the maximum
of m and n. Then a and b are elements of Ik, as Im and In are subsets
of Ik. It follows that a + b ∈ Ik, as Ik is an ideal and so a + b ∈ I.
Finally suppose that a ∈ I and r ∈ R. Then a ∈ In, for some n. In
this case ra ∈ In ⊂ I. Thus I is an ideal. �

Definition 6.13. Let R be a integral domain. We say that R is a
principal ideal domain, abbreviated to PID, if every ideal I in R is
principal.

Lemma 6.14. Let R be a principal ideal domain.
Then every ascending chain of ideals stabilises. In particular every

non-zero element a of R, which is not invertible, has a factorisation

p1p2p3 · · · pk,

into irreducible elements of R.
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Proof. Suppose we have an ascending chain of ideals as in (2) of (6.11).
Let I be the union of these ideals. By (6.12) I is an ideal of R. As
R is assumed to be a PID, I is principal, so that I = 〈b〉, for some
b ∈ R. Thus b ∈ 〈an〉, for some n. In this case b = qan, for some q.
But then 〈b〉 ⊂ 〈an〉. As we have an increasing sequence of ideals, it
follows that in fact 〈am〉 = 〈b〉, for all m ≥ n, that is, the sequence of
ideals stabilises. Now apply (6.11). �

Thus we have finished the first step of our program. Given an integral
domain R, we have found sufficient conditions for the factorisation
of any element a, that is neither zero nor invertible, into irreducible
elements.

Now we turn to the other problem, the question of uniqueness.

Lemma 6.15. Let R be an integral domain and suppose that p divides
q, where both p and q are primes.

Then p and q are associates.

Proof. By assumption
q = ap,

for some a ∈ R. As q is prime, either q divides a or q divides p. If q
divides p then p and q are associates.

Otherwise q divides a. In this case a = qb and so

q = ap = (qb)p = (pb)q.

Cancelling, we have that p is invertible, absurd. �

Lemma 6.16. Let R be an integral domain and let a and b be two
non-zero elements of R, neither of which are invertible. Suppose that
a = p1p2 . . . pk and b = q1q2 . . . ql is a factorisation of a and b into
primes.

Then a divides b, if and only if k ≤ l and after re-ordering the qj,
we have that pi and qi are associates, for i ≤ k.

In particular there is at most one prime factorisation of every non-
zero element a of R, up to associates and re-ordering.

Proof. We prove the first statement. One direction is clear. Otherwise
suppose a divides b. As p1 divides a and a divides b, p1 divides b. As
p1 is prime and it divides a product, it most divide one of the factors
qi. Possibly re-ordering, we may assume that i = 1. By (6.15) p1
and q1 are associates. Cancelling p1 from both sides and absorbing the
resulting invertible into q2, we are done by induction on k.

Now suppose that a has two different prime factorisations,

p1p2 · · · pk and q1q2 · · · ql.
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As a|a, it follows that k ≤ l and after rearranging that pi and qi are
associates. Using a|a again, but now the other way around, we get
l ≤ k. Thus we have uniqueness of prime factorisation. �

Putting all this together, we have

Proposition 6.17. Let R be an integral domain, in which every as-
cending chain of principal ideals stabilises.

Then R is a UFD if and only if every irreducible element of R is
prime.

Definition 6.18. Let R be an integral domain. Let a and b be two
elements of R. We say that d is the greatest common divisor of a
and b if

(1) d|a and d|b,
(2) if d′|a and d′|b then d′|d.

Note that the gcd is not unique. In fact if d is a gcd, then so is d′ if
and only if d and d′ are associates.

Lemma 6.19. Let R be a UFD
Then every pair of elements has a gcd.

Proof. Let a and b be two elements of R. If either a or b is zero, then
it is easy to see that the other element is the gcd. If either element is
invertible then in fact the gcd is 1 (or in fact any invertible element).

So we may assume that neither a nor b is zero or invertible. Let
a = p1p2 . . . pk and b = q1q2 . . . ql be two prime factorisations of a and
b. Note that we may put both factorisations into a more standard form,

a = upm1
1 pm2

2 pm3
3 · · · p

mk
k and vpn1

1 pn2
2 pn3

3 · · · p
nk
k ,

where u and v are invertible, and pi and pj are associates if and only
if i = j. In this case it is clear, using (6.16), that the gcd is d =

pl1pl22 p
l3
3 · · · p

lk
k , where li is the minimum of mi and ni. �

Lemma 6.20. Let R be a ring, let Ii be a collection of ideals in R and
let I be their intersection.

Then I is an ideal.

Proof. Easy exercise left to the reader. �

Definition-Lemma 6.21. Let R be a ring and let S be a subset of R.
The ideal generated by S, denoted 〈S〉, is the smallest ideal containing
S.

Proof. Let Ii be the collection of all ideals that contain S. Then the
intersection I of these ideals is an ideal by (6.20) and this is clearly the
smallest ideal that contains S. �
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Lemma 6.22. Let R be a commutative ring and let S be a subset of
R.

Then the ideal generated by S consists of all finite combinations

r1a1 + r2a2 + · · ·+ rkak,

where r1, r2, . . . , rk ∈ R and a1, a2, . . . , ak ∈ S.

Proof. It is clear that any ideal that contains S must contain all ele-
ments of this form, since any ideal is closed under addition and multi-
plication by elements of R. On the other hand, it is an easy exercise
to check that these combinations do form an ideal. �

Lemma 6.23. Let R be a PID.
Then every pair of elements a and b has a gcd d, such that

d = ra + sb,

where r and s ∈ R.

Proof. Consider the ideal I generated by a and b, 〈a, b〉. As R is a PID,
I = 〈d〉. As d ∈ I, d = ra + sb, for some r and s in R. As a ∈ I = 〈d〉,
d divides a. Similarly d divides b. Suppose that d′ divides a and d′

divides b. Then 〈a, b〉 ⊂ 〈d′〉. But then d′|d. �

Theorem 6.24. Let R be a PID.
Then R is a UFD.

Proof. We have already seen that the set of principal ideals satisfies
ACC. It remains to prove that irreducible implies prime.

Let a be an irreducible element of R. Let b and c be any two elements
of R and suppose that a divides the product bc. Then bc ∈ 〈a〉. Let d
be the gcd of a and b. Then d divides a. As a is irreducible, there are
only two possibilities; either d is an associate of a or d is invertible.

Suppose that d is an associate of a. As d divides b, then a divides
b and we are done. Otherwise d is invertible and we may take d to be
1. In this case, by (6.23), we may find r and s such that 1 = ra + sb.
Multiplying by c, we have

c = rac + sbc = (rc + qs)a where bc = qa,

so that a divides c. Thus a is prime and R is a UFD. �
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