6. Special Domains

Let R be an integral domain. Recall that an element $p \neq 0$, of R is said to be prime, if the corresponding principal ideal $\langle p\rangle$ is prime (so that p is not invertible).
Definition 6.1. Let a and b be two elements of an integral domain. We say that a divides b and write $a \mid b$ if there is an element q such that $b=q a$. We say that a and b are associates if a divides b and b divides a.

Example 6.2. Let $R=\mathbb{Z}$. Then $2 \mid 6$. Indeed $6=3 \cdot 2$. Moreover 3 and -3 are associates.

Let R be an integral domain. Note some obvious facts. Every element a of R divides 0 . Indeed $0=0 \cdot a$. On the other hand, 0 only divides 0 . Indeed if $a=q \cdot 0$, then $a=0$ (obvious!). Finally if u is invertible it divides any other element a. Indeed if $v \in R$ such that $u v=1$ then $a=a \cdot 1=(a v) u$.

It is useful to also record the following easy:
Lemma 6.3. Let R be an integral domain and let a and b be two elements of R.

The following are equivalent:
(1) a divides b.
(2) $b \in\langle a\rangle$.
(3) $\langle b\rangle \subset\langle a\rangle$.

Proof. Note that (1) holds if and only if $b=q a$ for some q. Thus (1) and (2) are equivalent.
(3) certainly implies (2), since $b=1 \cdot b \in\langle b\rangle$. On the other hand, (2) implies (3), since $\langle b\rangle$ is the smallest ideal containing b and the ideal $\langle a\rangle$ contains b.

Lemma 6.4. Let R be an integral domain and let $p \in R$.
Then p is prime if and only if p is not invertible and whenever p divides $a b$ then either p divides a or p divides b, where a and b are elements of R.

Proof. Suppose that p is prime and p divides $a b$. Let $I=\langle p\rangle$. Then $a b \in I$. As p is prime, then I is prime by definition. Thus either $a \in I$ or $b \in I$. But then either $p \mid a$ or $p \mid b$. Thus if p is prime and $p \mid a b$ then either $p \mid a$ or $p \mid b$. The reverse implication is just as easy.

Lemma 6.5. Let R be an integral domain and let a and b be two nonzero elements of R.

The following are equivalent:
(1) a and b are associates.
(2) $a=u b$ for some invertible u.
(3) $\langle a\rangle=\langle b\rangle$.

Proof. The equivalence of (1) and (3) follows from the equivalence of (1) and (3) of (6.3).

If $a=u b$ then $\langle a\rangle \subset\langle b\rangle$, again by (6.3). But if $v u=1$ then

$$
b=1 \cdot b=(v u) b=v a .
$$

so that $\langle b\rangle \subset\langle a\rangle$. Thus (2) implies (3).
Now suppose that a and b are associates. As b divides a we may find q such that $a=q b$. As a divides b we may find p such that $b=p a$. In this case

$$
\begin{aligned}
b & =p a \\
& =p(q b) \\
& =(p q) b .
\end{aligned}
$$

Cancelling, we get that $p q=1$. Thus p and q are invertible. Hence (1) implies (2).

Definition 6.6. Let R be an integral domain.
We say that R is a unique factorisation domain (abbreviated to $U F D)$ if every non-zero element a of R, which is not invertible, has a factorisation into a product of primes,

$$
p_{1} p_{2} p_{3} \cdots p_{k}
$$

which is unique up to order and associates.
The last statement is equivalent to saying that if we can find two factorisations of a,

$$
p_{1} p_{2} p_{3} \cdots p_{k}=q_{1} q_{2} q_{3} \cdots q_{l} .
$$

where p_{i} and q_{j} are prime, then $k=l$, and up to re-ordering of $q_{1}, q_{2}, \ldots, q_{l}, p_{i}$ and q_{i} are associates.

Example 6.7. Of course, by the Fundamental Theorem of Arithmetic, \mathbb{Z} is a UFD.

In this case case the prime elements of \mathbb{Z} are the ordinary primes and their inverses. For example, suppose we look at the prime factorisation of 120 . One possibility, the standard one, is

$$
2^{3} \cdot 3 \cdot 5
$$

However another possibility is

$$
-5 \cdot 3 \cdot(-2)^{3}
$$

The point is that in an arbitrary ring there is no standard choice of associate. On the other hand, every non-zero integer has two associates, and it is customary to favour the positive one.

Consider the problem of starting with a ring R and proving that R is a UFD. Obviously this consists of two steps. The first is to start with an element a of R and express it as a product of primes. We call this existence. The next step is to prove that this factorisation is unique. We call this uniqueness.

Let us consider the first step, that is, existence of a factorisation. How do we write any integer as a product of primes? Well there is an obvious way to proceed. Try to factorise the integer. If you can, then work with both factors and if you cannot then you already have a prime.

Unfortunately this approach hides one nasty subtlety.
Definition 6.8. Let R be a ring and let $a \in R$ be a non-zero element of R which is not invertible. We say that a is irreducible if whenever $a=b c$, then either b or c is invertible.

Equivalently, a is irreducible if and only if whenever b divides a, then b is either invertible or an associate of a. Clearly every prime element a of an integral domain R is automatically irreducible. The subtlety that arises is that in an arbitrary integral domain there are irreducible elements that are not prime. On the other hand, unless the ring is very pathological indeed, it is quite easy to prove that every non-zero element of a ring is a product of irreducibles, in fact using the method outlined above. The only issue is that the natural process outlined above terminates in a finite number of steps.

Before we go into this deeper, we need a basic definition, concerning partially ordered sets.

Definition 6.9. Let X be a set. A partial order on X is a reflexive and transitive relation on $X \times X$. It is customary to denote a partial order \leq. The fact that \leq is reflexive is equivalent to $x \leq x$, asymmetry means that if $x \leq y$ and $y \leq x$ then $x=y$ and the fact \leq is transitive is equivalent to

$$
a \leq b \quad \text { and } \quad b \leq c \quad \text { implies } \quad a \leq c .
$$

We also require that if $x \leq y$ and $y \leq x$ then $x=y$ (this is known as asymmetry).

We say that X satisfies the ascending chain condition (ACC) if every infinite increasing chain

$$
x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{n} \leq \cdots
$$

eventually stabilises, that is, there is an n_{0} such that $x_{n}=x_{m}$ for every n and m at least n_{0}.

Note that, in the definition of a partial order, we do not require that every two elements of X are comparable. In fact if every pair of elements are comparable, that is, for every x and $y \in X$, either $x \leq y$ of $y \leq x$, then we say that our partial order is a total order.

There is a similar notion for descending chains, knows as the descending chain condition, or DCC for short.

Example 6.10. Every finite set with a partial order satisfies ACC and DCC for obvious reasons.

Let X be a subset of the real numbers with the obvious relation. Then X is a partially ordered set (totally ordered, even). The set

$$
X=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\},
$$

satisfies ACC but it clearly does not satisfy DCC.
Let Y be a set and let X be a subset of the power set of Y, so that X is a collection of subsets of Y. Define a relation \leq by the rule,

$$
A \leq B \quad \text { if and only if } \quad A \subset B
$$

In the case that X is the whole power set of Y, note that \leq is not a total order, provided that Y has at least two elements a and b, since in this case $A=\{a\}$ and $B=\{b\}$ are incomparable.

Factorisation Algorithm Let R be an integral domain and let a be a non-zero element of R that is not invertible. Consider the following algorithm, that produces a, possibly infinite, pair of sequences of elements a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots of R, where $a_{i}=a_{i+1} b_{i+1}$ and neither a_{i} nor b_{i} is invertible. Suppose that we have already produced $a_{1}, a_{2}, \ldots, a_{k}$ and $b_{1}, b_{2}, \ldots, b_{k}$.
(1) If a_{k} and b_{k} are both irreducible then STOP.
(2) Otherwise, possibly switching a_{k} and b_{k} we may assume that a_{k} is not irreducible. Then we may write $a_{k}=a_{k+1} b_{k+1}$, where neither a_{k+1} nor b_{k+1} are invertible. GOTO (1).

Proposition 6.11. Let R be an integral domain.
The following are equivalent:
(1) The factorisation algorithm above terminates, starting with any non-zero element a of the ring R and pursuing all possible ways of factorising a. In particular, every non-zero element a of R is either invertible or a product of irreducibles.
(2) The set of principal ideals satisfies ACC. That is, every increasing chain

$$
\left\langle a_{1}\right\rangle \subset\left\langle a_{2}\right\rangle \subset\left\langle a_{3}\right\rangle \subset \cdots \subset\left\langle a_{n}\right\rangle \subset \cdots
$$

eventually stabilises.
Proof. Suppose we have a strictly increasing sequence of principal ideals as in (2). We will find an a such that the factorisation algorithm does not terminate.

Note that a principal ideal $\langle a\rangle=R$ if and only if a is invertible. As the sequence of ideals in (2) is increasing, then no ideal can be the whole of R. Thus none of the a_{i} are invertibles. As $a_{i} \in\left\langle a_{i+1}\right\rangle$, we may find b_{i+1} such that $a_{i}=b_{i+1} a_{i+1}$. But b_{i+1} cannot be invertible as $\left\langle a_{i}\right\rangle \neq\left\langle a_{i+1}\right\rangle$. Thus the factorisation algorithm, with $a=a_{1}$ does not terminate. Thus (1) implies (2).

The reverse implication follows similarly.
Lemma 6.12. Let R be a ring and let

$$
I_{1} \subset I_{2} \subset I_{3} \subset \cdots \subset I_{n} \subset \cdots,
$$

be an ascending sequence of ideals.
Then the union I of these ideals is an ideal.
Proof. We have to show that I is non-empty and closed under addition and multiplication by any element of R.
I is clearly non-empty. For example it contains I_{1}, which is nonempty. Suppose that a and b belong to I. Then there are two natural numbers m and n such that $a \in I_{m}$ and $b \in I_{n}$. Let k be the maximum of m and n. Then a and b are elements of I_{k}, as I_{m} and I_{n} are subsets of I_{k}. It follows that $a+b \in I_{k}$, as I_{k} is an ideal and so $a+b \in I$. Finally suppose that $a \in I$ and $r \in R$. Then $a \in I_{n}$, for some n. In this case $r a \in I_{n} \subset I$. Thus I is an ideal.

Definition 6.13. Let R be a integral domain. We say that R is a principal ideal domain, abbreviated to PID, if every ideal I in R is principal.

Lemma 6.14. Let R be a principal ideal domain.
Then every ascending chain of ideals stabilises. In particular every non-zero element a of R, which is not invertible, has a factorisation

$$
p_{1} p_{2} p_{3} \cdots p_{k},
$$

into irreducible elements of R.

Proof. Suppose we have an ascending chain of ideals as in (2) of (6.11). Let I be the union of these ideals. By (6.12) I is an ideal of R. As R is assumed to be a PID, I is principal, so that $I=\langle b\rangle$, for some $b \in R$. Thus $b \in\left\langle a_{n}\right\rangle$, for some n. In this case $b=q a_{n}$, for some q. But then $\langle b\rangle \subset\left\langle a_{n}\right\rangle$. As we have an increasing sequence of ideals, it follows that in fact $\left\langle a_{m}\right\rangle=\langle b\rangle$, for all $m \geq n$, that is, the sequence of ideals stabilises. Now apply (6.11).

Thus we have finished the first step of our program. Given an integral domain R, we have found sufficient conditions for the factorisation of any element a, that is neither zero nor invertible, into irreducible elements.

Now we turn to the other problem, the question of uniqueness.
Lemma 6.15. Let R be an integral domain and suppose that p divides q, where both p and q are primes.

Then p and q are associates.
Proof. By assumption

$$
q=a p,
$$

for some $a \in R$. As q is prime, either q divides a or q divides p. If q divides p then p and q are associates.

Otherwise q divides a. In this case $a=q b$ and so

$$
q=a p=(q b) p=(p b) q .
$$

Cancelling, we have that p is invertible, absurd.
Lemma 6.16. Let R be an integral domain and let a and b be two non-zero elements of R, neither of which are invertible. Suppose that $a=p_{1} p_{2} \ldots p_{k}$ and $b=q_{1} q_{2} \ldots q_{l}$ is a factorisation of a and b into primes.

Then a divides b, if and only if $k \leq l$ and after re-ordering the q_{j}, we have that p_{i} and q_{i} are associates, for $i \leq k$.

In particular there is at most one prime factorisation of every nonzero element a of R, up to associates and re-ordering.
Proof. We prove the first statement. One direction is clear. Otherwise suppose a divides b. As p_{1} divides a and a divides b, p_{1} divides b. As p_{1} is prime and it divides a product, it most divide one of the factors q_{i}. Possibly re-ordering, we may assume that $i=1$. By 6.15 p_{1} and q_{1} are associates. Cancelling p_{1} from both sides and absorbing the resulting invertible into q_{2}, we are done by induction on k.

Now suppose that a has two different prime factorisations,

$$
p_{1} p_{2} \cdots p_{k} \quad \underset{6}{\text { and }} \quad q_{1} q_{2} \cdots q_{l}
$$

As $a \mid a$, it follows that $k \leq l$ and after rearranging that p_{i} and q_{i} are associates. Using $a \mid a$ again, but now the other way around, we get $l \leq k$. Thus we have uniqueness of prime factorisation.

Putting all this together, we have
Proposition 6.17. Let R be an integral domain, in which every ascending chain of principal ideals stabilises.

Then R is a UFD if and only if every irreducible element of R is prime.
Definition 6.18. Let R be an integral domain. Let a and b be two elements of R. We say that d is the greatest common divisor of a and b if
(1) $d \mid a$ and $d \mid b$,
(2) if $d^{\prime} \mid a$ and $d^{\prime} \mid b$ then $d^{\prime} \mid d$.

Note that the gcd is not unique. In fact if d is a gcd, then so is d^{\prime} if and only if d and d^{\prime} are associates.

Lemma 6.19. Let R be a UFD
Then every pair of elements has a gcd.
Proof. Let a and b be two elements of R. If either a or b is zero, then it is easy to see that the other element is the gcd. If either element is invertible then in fact the gcd is 1 (or in fact any invertible element).

So we may assume that neither a nor b is zero or invertible. Let $a=p_{1} p_{2} \ldots p_{k}$ and $b=q_{1} q_{2} \ldots q_{l}$ be two prime factorisations of a and b. Note that we may put both factorisations into a more standard form,

$$
a=u p_{1}^{m_{1}} p_{2}^{m_{2}} p_{3}^{m_{3}} \cdots p_{k}^{m_{k}} \quad \text { and } \quad v p_{1}^{n_{1}} p_{2}^{n_{2}} p_{3}^{n_{3}} \cdots p_{k}^{n_{k}},
$$

where u and v are invertible, and p_{i} and p_{j} are associates if and only if $i=j$. In this case it is clear, using (6.16), that the gcd is $d=$ $p^{l_{1}} p_{2}^{l_{2}} p_{3}^{l_{3}} \cdots p_{k}^{l_{k}}$, where l_{i} is the minimum of m_{i} and n_{i}.
Lemma 6.20. Let R be a ring, let I_{i} be a collection of ideals in R and let I be their intersection.

Then I is an ideal.
Proof. Easy exercise left to the reader.
Definition-Lemma 6.21. Let R be a ring and let S be a subset of R. The ideal generated by S, denoted $\langle S\rangle$, is the smallest ideal containing S.

Proof. Let I_{i} be the collection of all ideals that contain S. Then the intersection I of these ideals is an ideal by (6.20) and this is clearly the smallest ideal that contains S.

Lemma 6.22. Let R be a commutative ring and let S be a subset of R.

Then the ideal generated by S consists of all finite combinations

$$
r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{k} a_{k},
$$

where $r_{1}, r_{2}, \ldots, r_{k} \in R$ and $a_{1}, a_{2}, \ldots, a_{k} \in S$.
Proof. It is clear that any ideal that contains S must contain all elements of this form, since any ideal is closed under addition and multiplication by elements of R. On the other hand, it is an easy exercise to check that these combinations do form an ideal.

Lemma 6.23. Let R be a PID.
Then every pair of elements a and b has a gcd d, such that

$$
d=r a+s b,
$$

where r and $s \in R$.
Proof. Consider the ideal I generated by a and $b,\langle a, b\rangle$. As R is a PID, $I=\langle d\rangle$. As $d \in I, d=r a+s b$, for some r and s in R. As $a \in I=\langle d\rangle$, d divides a. Similarly d divides b. Suppose that d^{\prime} divides a and d^{\prime} divides b. Then $\langle a, b\rangle \subset\left\langle d^{\prime}\right\rangle$. But then $d^{\prime} \mid d$.

Theorem 6.24. Let R be a PID.
Then R is a UFD.
Proof. We have already seen that the set of principal ideals satisfies ACC. It remains to prove that irreducible implies prime.

Let a be an irreducible element of R. Let b and c be any two elements of R and suppose that a divides the product $b c$. Then $b c \in\langle a\rangle$. Let d be the gcd of a and b. Then d divides a. As a is irreducible, there are only two possibilities; either d is an associate of a or d is invertible.

Suppose that d is an associate of a. As d divides b, then a divides b and we are done. Otherwise d is invertible and we may take d to be 1. In this case, by (6.23), we may find r and s such that $1=r a+s b$. Multiplying by c, we have

$$
c=r a c+s b c=(r c+q s) a \quad \text { where } \quad b c=q a,
$$

so that a divides c. Thus a is prime and R is a UFD.

