5. Prime and Maximal Ideals

Let R be a ring and let I be an ideal of R, where $I \neq R$. Consider the quotient ring R/I. Two very natural questions arise:

- (1) When is R/I a domain?
- (2) When is R/I a field?

Definition-Lemma 5.1. Let R be a ring and let I be an ideal of R. We say that I is **prime** if $I \neq R$ and whenever $ab \in I$ then either $a \in I$ or $b \in I$.

R/I is a domain if and only if I is prime.

Proof. Suppose that I is prime. Let x and y be two elements of R/I. Then there are elements a and b of R such that x = a + I and y = b + I. Suppose that xy = 0, but that $x \neq 0$, that is, suppose that $a \notin I$.

$$xy = (a+I)(b+I)$$
$$= ab + I$$
$$= 0.$$

But then $ab \in I$ and as I is prime, $b \in I$. But then y = b + I = I = 0. Thus R/I is a domain.

Now suppose that R/I is a domain. Let a and b be two elements of R such that $ab \in I$ and suppose that $a \notin I$. Let x = a + I, y = b + I. Then xy = ab + I = 0. As $x \neq 0$, and R/I is a domain, y = 0. But then $b \in I$ and so I is prime.

Example 5.2. Let $R = \mathbb{Z}$. Then every ideal in R has the form $\langle n \rangle = n\mathbb{Z}$. It is not hard to see that I is prime if and only if n is prime.

Definition 5.3. Let R be an integral domain and let a be a non-zero element of R. We say that a is **prime**, if $\langle a \rangle$ is a prime ideal.

Note that the condition that $\langle a \rangle$ is not the whole of R is equivalent to requiring that a is not invertible.

Definition-Lemma 5.4. Let R be a ring. Then there is a unique ring homomorphism $\phi \colon \mathbb{Z} \longrightarrow R$.

We say that the **characteristic** of R is n if the order of the image of ϕ is finite, equal to n; otherwise the characteristic is 0.

Let R be a domain of finite characteristic. Then the characteristic is prime.

Proof. Let $\phi \colon \mathbb{Z} \longrightarrow R$ be a ring homomorphism. Then $\phi(1) = 1$. Note that \mathbb{Z} is a cyclic group under addition. Thus there is a unique map that sends 1 to 1 and is a group homomorphism. Thus ϕ is certainly unique and it is not hard to check that in fact ϕ is a ring homomorphism.

Now suppose that R is a domain. Then the image of ϕ is a domain. In particular the kernel I of ϕ is a prime ideal. Suppose that $I = \langle p \rangle$. Then the image of ϕ is isomorphic to R/I, that is the integers modulo p, and so the characteristic is equal to p.

Another, obviously equivalent, way to define the characteristic n is to take the minimum non-zero positive integer such that n1 = 0.

Example 5.5. The characteristic of \mathbb{Q} is zero. Indeed the natural map $\mathbb{Z} \longrightarrow \mathbb{Q}$ is an inclusion. Thus every field that contains \mathbb{Q} has characteristic zero. On the other hand \mathbb{Z}_p is a field of characteristic p.

Definition 5.6. Let I be an ideal. We say that I is **maximal** if for every ideal J, such that $I \subset J$, either J = I or J = R.

Proposition 5.7. Let R be a commutative ring.

Then R is a field if and only if the only ideals are $\{0\}$ and R.

Proof. We have already seen that if R is a field, then R contains no non-trivial ideals.

Now suppose that R contains no non-trivial ideals and let $a \in R$. Suppose that $a \neq 0$ and let $I = \langle a \rangle$. Then $I \neq \{0\}$. Thus I = R. But then $1 \in I$ and so 1 = ba. Thus a is a invertible and as a was arbitrary, R is a field.

Theorem 5.8. Let R be a commutative ring.

Then R/M is a field if and only if M is a maximal ideal.

Proof. Note that there is an obvious correspondence between the ideals of R/M and ideals of R that contain M. The result follows immediately from (5.7).

Corollary 5.9. Let R be a commutative ring.

Then every maximal ideal is prime.

Proof. Clear as every field is an integral domain.

Example 5.10. Let $R = \mathbb{Z}$ and let p be a prime. Then $I = \langle p \rangle$ is not only prime, but it is in fact maximal. Indeed the quotient is \mathbb{Z}_p .

Example 5.11. Let X be a set and let R be a commutative ring and let F be the set of all functions from X to R.

Let $x \in X$ be a point of X and let I be the ideal of all functions vanishing at x. Then F/I is isomorphic to R.

Thus I is prime if and only if R is an integral domain and I is maximal if and only if R is a field. For example, take X = [0,1] and $R = \mathbb{R}$. In this case it turns out that every maximal ideal is of the same form (that is, the set of functions vanishing at a point).

Example 5.12. Let R be the ring of Gaussian integers and let I be the ideal of all Gaussian integers a + bi where both a and b are divisible by 3.

I claim that I is maximal.

Indeed it is not hard to see that R/I is finite. As every finite integral domain is a field, in fact it suffices to prove that I is prime. Suppose that $(a + bi)(c + di) \in I$. As

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i,$$

we have

$$3|(ac-bd)$$
 and $3|(ad+bc)$.

Suppose that $a + bi \notin I$. Adding and subtracting the two results above we have

$$3|(a+b)c - (b-a)d$$
 and $3|(a+b)d + (b-a)c$.

Now either 3 divides a and it does not divide b, or vice-versa, or the same is true, with a+b replacing a and a-b replacing b, as can be seen by an easy case-by-case analysis. Suppose that 3 divides a whilst 3 does not divide b. Then 3|bd and so 3|d as 3 is prime. Similarly 3|c. Thus we are done in this case. Similar analyses pertain in the other cases.

Thus I is prime. It turns out that R/I is a field with nine elements.

Example 5.13. Now suppose that we replace 3 by 5 and look at the resulting ideal J. I claim that J is not maximal.

Indeed consider x = 2 + i and y = 2 - i. Then

$$xy = (2+i)(2-i) = 4+1 = 5,$$

so that $xy \in J$, whilst neither x nor y are in J.

Thus J is not even prime.