5. Prime and Maximal Ideals

Let R be a ring and let I be an ideal of R, where $I \neq R$. Consider the quotient ring R / I. Two very natural questions arise:
(1) When is R / I a domain?
(2) When is R / I a field?

Definition-Lemma 5.1. Let R be a ring and let I be an ideal of R. We say that I is prime if $I \neq R$ and whenever $a b \in I$ then either $a \in I$ or $b \in I$.
R / I is a domain if and only if I is prime.
Proof. Suppose that I is prime. Let x and y be two elements of R / I. Then there are elements a and b of R such that $x=a+I$ and $y=b+I$. Suppose that $x y=0$, but that $x \neq 0$, that is, suppose that $a \notin I$.

$$
\begin{aligned}
x y & =(a+I)(b+I) \\
& =a b+I \\
& =0 .
\end{aligned}
$$

But then $a b \in I$ and as I is prime, $b \in I$. But then $y=b+I=I=0$. Thus R / I is a domain.

Now suppose that R / I is a domain. Let a and b be two elements of R such that $a b \in I$ and suppose that $a \notin I$. Let $x=a+I, y=b+I$. Then $x y=a b+I=0$. As $x \neq 0$, and R / I is a domain, $y=0$. But then $b \in I$ and so I is prime.
Example 5.2. Let $R=\mathbb{Z}$. Then every ideal in R has the form $\langle n\rangle=$ $n \mathbb{Z}$. It is not hard to see that I is prime if and only if n is prime.
Definition 5.3. Let R be an integral domain and let a be a non-zero element of R. We say that a is prime, if $\langle a\rangle$ is a prime ideal.

Note that the condition that $\langle a\rangle$ is not the whole of R is equivalent to requiring that a is not invertible.
Definition-Lemma 5.4. Let R be a ring. Then there is a unique ring homomorphism $\phi: \mathbb{Z} \longrightarrow R$.

We say that the characteristic of R is n if the order of the image of ϕ is finite, equal to n; otherwise the characteristic is 0 .

Let R be a domain of finite characteristic. Then the characteristic is prime.
Proof. Let $\phi: \mathbb{Z} \longrightarrow R$ be a ring homomorphism. Then $\phi(1)=1$. Note that \mathbb{Z} is a cyclic group under addition. Thus there is a unique map that sends 1 to 1 and is a group homomorphism. Thus ϕ is certainly unique and it is not hard to check that in fact ϕ is a ring homomorphism.

Now suppose that R is a domain. Then the image of ϕ is a domain. In particular the kernel I of ϕ is a prime ideal. Suppose that $I=\langle p\rangle$. Then the image of ϕ is isomorphic to R / I, that is the integers modulo p, and so the characteristic is equal to p.

Another, obviously equivalent, way to define the characteristic n is to take the minimum non-zero positive integer such that $n 1=0$.

Example 5.5. The characteristic of \mathbb{Q} is zero. Indeed the natural map $\mathbb{Z} \longrightarrow \mathbb{Q}$ is an inclusion. Thus every field that contains \mathbb{Q} has characteristic zero. On the other hand \mathbb{Z}_{p} is a field of characteristic p.
Definition 5.6. Let I be an ideal. We say that I is maximal if for every ideal J, such that $I \subset J$, either $J=I$ or $J=R$.

Proposition 5.7. Let R be a commutative ring.
Then R is a field if and only if the only ideals are $\{0\}$ and R.
Proof. We have already seen that if R is a field, then R contains no non-trivial ideals.

Now suppose that R contains no non-trivial ideals and let $a \in R$. Suppose that $a \neq 0$ and let $I=\langle a\rangle$. Then $I \neq\{0\}$. Thus $I=R$. But then $1 \in I$ and so $1=b a$. Thus a is a invertible and as a was arbitrary, R is a field.

Theorem 5.8. Let R be a commutative ring.
Then R / M is a field if and only if M is a maximal ideal.
Proof. Note that there is an obvious correspondence between the ideals of R / M and ideals of R that contain M. The result follows immediately from (5.7).

Corollary 5.9. Let R be a commutative ring.
Then every maximal ideal is prime.
Proof. Clear as every field is an integral domain.
Example 5.10. Let $R=\mathbb{Z}$ and let p be a prime. Then $I=\langle p\rangle$ is not only prime, but it is in fact maximal. Indeed the quotient is \mathbb{Z}_{p}.

Example 5.11. Let X be a set and let R be a commutative ring and let F be the set of all functions from X to R.

Let $x \in X$ be a point of X and let I be the ideal of all functions vanishing at x. Then F / I is isomorphic to R.

Thus I is prime if and only if R is an integral domain and I is maximal if and only if R is a field. For example, take $X=[0,1]$ and $R=\mathbb{R}$. In this case it turns out that every maximal ideal is of the same form (that is, the set of functions vanishing at a point).

Example 5.12. Let R be the ring of Gaussian integers and let I be the ideal of all Gaussian integers $a+b i$ where both a and b are divisible by 3.

I claim that I is maximal.
Indeed it is not hard to see that R / I is finite. As every finite integral domain is a field, in fact it suffices to prove that I is prime. Suppose that $(a+b i)(c+d i) \in I$. As

$$
(a+b i)(c+d i)=(a c-b d)+(a d+b c) i
$$

we have

$$
3 \mid(a c-b d) \quad \text { and } \quad 3 \mid(a d+b c)
$$

Suppose that $a+b i \notin I$. Adding and subtracting the two results above we have

$$
3 \mid(a+b) c-(b-a) d \quad \text { and } \quad 3 \mid(a+b) d+(b-a) c
$$

Now either 3 divides a and it does not divide b, or vice-versa, or the same is true, with $a+b$ replacing a and $a-b$ replacing b, as can be seen by an easy case-by-case analysis. Suppose that 3 divides a whilst 3 does not divide b. Then $3 \mid b d$ and so $3 \mid d$ as 3 is prime. Similarly $3 \mid c$. Thus we are done in this case. Similar analyses pertain in the other cases.

Thus I is prime. It turns out that R / I is a field with nine elements.
Example 5.13. Now suppose that we replace 3 by 5 and look at the resulting ideal J. I claim that J is not maximal.

Indeed consider $x=2+i$ and $y=2-i$. Then

$$
x y=(2+i)(2-i)=4+1=5
$$

so that $x y \in J$, whilst neither x nor y are in J.
Thus J is not even prime.

