4. Field of fractions

The rational numbers \mathbb{Q} are constructed from the integers \mathbb{Z} by adding inverses. In fact a rational number is of the form a / b, where a and b are integers. Note that a rational number does not have a unique representative in this way. In fact

$$
\frac{a}{b}=\frac{k a}{k b} .
$$

So really a rational number is an equivalence class of pairs $[a, b]$, where two such pairs $[a, b]$ and $[c, d]$ are equivalent if and only if $a d=b c$.

Now given an arbitrary integral domain R, we can perform the same operation.

Definition-Lemma 4.1. Let R be any integral domain. Let N be the subset of $R \times R$ such that the second coordinate is non-zero.

Define an equivalence relation \sim on N as follows.

$$
(a, b) \sim(c, d) \quad \text { if and only if } \quad a d=b c .
$$

Proof. We have to check three things, reflexivity, symmetry and transitivity.

Suppose that $(a, b) \in N$. Then

$$
a \cdot b=a \cdot b
$$

so that $(a, b) \sim(a, b)$. Hence \sim is reflexive.
Now suppose that $(a, b),(c, d) \in N$ and that $(a, b) \sim(c, d)$. Then $a d=b c$. But then $c b=d a$, as R is commutative and so $(c, d) \sim(a, b)$. Hence \sim is symmetric.

Finally suppose that $(a, b),(c, d)$ and $(e, f) \in R$ and that $(a, b) \sim$ $(c, d),(c, d) \sim(e, f)$. Then $a d=b c$ and $c f=d e$. Then

$$
\begin{aligned}
(a f) d & =(a d) f \\
& =(b c) f \\
& =b(c f) \\
& =(b e) d .
\end{aligned}
$$

As $(c, d) \in N$, we have $d \neq 0$. Cancelling d, we get $a f=b e$. Thus $(a, b) \sim(e, f)$. Hence \sim is transitive.

Definition-Lemma 4.2. The field of fractions of R, denoted F is the set of equivalence classes, under the equivalence relation defined above. Given two elements $[a, b]$ and $[c, d]$ define

$$
[a, b]+[c, d]=[a d+b c, b d] \quad \text { and } \quad[a, b] \cdot[c, d]=[a c, b d] .
$$

With these rules of addition and multiplication F becomes a field. Moreover there is a natural injective ring homomorphism

$$
\phi: R \longrightarrow F,
$$

so that we may identify R as a subring of F. In fact ϕ is universal amongs all such injective ring homomorphisms whose targets are fields.

Proof. First we have to check that this rule of addition and multiplication is well-defined. Suppose that $[a, b]=\left[a^{\prime}, b^{\prime}\right]$ and $[c, d]=\left[c^{\prime}, d^{\prime}\right]$. By commutativity and an obvious induction (involving at most two steps, the only real advantage of which is to simplify the notation) we may assume $c=c^{\prime}$ and $d=d^{\prime}$. As $[a, b]=\left[a^{\prime}, b^{\prime}\right]$ we have $a b^{\prime}=a^{\prime} b$. Thus

$$
\begin{aligned}
\left(a^{\prime} d+b^{\prime} c\right)(b d) & =\left(a^{\prime} b d+b b^{\prime} c\right) d \\
& =\left(a b^{\prime} d+b b^{\prime} c\right) d \\
& =(a d+b c)\left(b^{\prime} d\right)
\end{aligned}
$$

Thus $\left[a^{\prime} d+b^{\prime} c, b^{\prime} d\right]=[a d+b c, b d]$. Thus the given rule of addition is well-defined. It can be shown similarly (and in fact more easily) that the given rule for multiplication is also well-defined.

We leave it is an exercise for the reader to check that F is a ring under addition and that multiplication is associative. For example, note that $[0,1]$ plays the role of 0 and $[1,1]$ plays the role of 1.

Given an element $[a, b]$ in F, where $a \neq 0$, then it is easy to see that $[b, a]$ is the inverse of $[a, b]$. It follows that F is a field.

Define a map

$$
\phi: R \longrightarrow F,
$$

by the rule

$$
\phi(a)=[a, 1] .
$$

Again it is easy to check that ϕ is indeed an injective ring homomorphism and that it satisfies the given universal property.
Example 4.3. If we take $R=\mathbb{Z}$, then of course the field of fractions is isomorphic to \mathbb{Q}.

If R is the ring of Gaussian integers, then F is a copy of the subfield of \mathbb{C} consisting of all complex numbers of the form $a+b i$ where now a and b are elements of \mathbb{Q}.

If $R=K[x]$, where K is a field, then the field of fractions is denoted $K(x)$. It consists of all rational functions, that is, all quotients

$$
\frac{f(x)}{g(x)},
$$

where f and g are polynomials with coefficients in K.

