
14. Finitely Generated Modules over a PID

We want to give a complete classification of finitely generated mod-
ules over a PID. Recall that a finitely generated module is a quotient
of Rn, a free module. Let K be the kernel. Then M is isomorphic to
Rn/K, by the Isomorphism Theorem.

Now K is a submodule of a Noetherian module; hence K is finitely
generated. Pick a finite set of generators of K (it turns out that K
is also isomorphic to a free module. Thus K is isomorphic to Rm, for
some m, and in fact m ≤ n).

As there is a map Rm −→ K, by composition we get an R-linear
map

φ : Rm −→ Rn.

Since K is determined by φ, M is determined by φ. The crucial piece
of information is to determine φ.

As this map is R-linear, just as in the case of vector spaces, ev-
erything is determined by the action of φ on the standard generators
f1, f2, . . . , fm. Suppose that we expand φ(fi) as a linear combination
of the standard generators e1, e2, . . . , en of Rn.

φ(fi) =
∑
j

aijej.

In this case we get a matrix

A = (aij) ∈Mn,m(R).

The point is to choose different bases of Rm and Rn so that the
representation of φ by A is in a better form. Note the following:

Lemma 14.1. Let r1, r2, . . . , rn be (respectively free) generators of M .
Then so are s1, s2, . . . , sn, where

(1) we multiply one of the ri by an invertible element,
(2) we switch the position of ri and rj,
(3) we replace ri by ri + arj, where a is any scalar.

Proof. Easy. �

At the level of matrices, (14.1) informs us that we are free to perform
any one of the elementary operations on matrices, namely multiplying
a row (respectively column) by an invertible element, switching two
rows (respectively columns) and taking a row and adding an arbitrary
multiple of another row (respectively column).

Definition-Proposition 14.2. Let A be a matrix with entries in a
Euclidean domain R.
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Then, after a sequence of elementary row operations and column op-
erations, we may put A into the following form, called Smith normal
form. The only non-zero entries are on the diagonal and each non-zero
entry divides the next one in the list.

Proof. The key point is to reduce to the case where one of the entries
of A is the gcd of the entries of A.

To this end, we first reduce to the case that given any two entries
in the same row or column, one entry divides the other. By elemen-
tary row and column operations we can always make any two entries
adjacent and so we reduce to the case that A is a 2× 1 matrix,(

a
b

)
(the case of a 1× 2 is the similar, or just take transposes).

Since we are working over a Euclidean domain (and not just a PID)
we can calculate the gcd by using Euclid’s algorithm. At each stage we
may find q and r such that

b = qa+ r or a = qb+ r.

By symmetry we may assume we have the former case. Now either
r = 0 in which case either a is the gcd, and we are done, or by Euclid’s
algorithm it suffices to find the gcd of a and r. But if we take the first
row of a and multiply by q and subtract this from the second row then
we get the matrix (

a
r

)
.

Therefore, after finitely many elementary row and column operations
we may assume that given any pair of entries of A one entry divides
the other. (14.3) implies that one element d of A is the gcd.

Now by permuting the rows and columns, we may assume that d is
at the top left hand corner. As d is the gcd, it divides every entry of
A. By row and column reduction we reduce to the case that the only
non-zero entry in the first column and row is the entry d at the top left
hand corner. Let B be the matrix obtained by striking out the first
row and column. Then every element of B is divisible by d and we are
done by induction on m and n. �

Lemma 14.3. Let A = (aij) ∈ Mn,m(R) be an array of elements of a
UFD R, with the property that if two entries belong to the same row or
the same column then one divides the other.

Then one entry is the gcd.
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Proof. If A has more than one row then we can do induction on the
number of rows. We may asume that the matrix B one gets by deleting
the first row has one entry b equal to the gcd. If b divides every element
in the first row then it is the gcd of A.

Otherwise there is an element a of the first row that divides every
element of B. Thus we may assume that A has one row. If A has more
than one column then let C be the matrix one gets by deleting the first
column. By induction one entry c of C divides every other element.
We compare this with the first element a. If the c divides a then c is
the gcd. Otherwise a is the gcd. �

Remark 14.4. One can actually reduce any matrix over a PID into
Smith normal form. In this case one needs to pre- and post-multiply by
invertible matrices with entries in R.

As before we are reduced to the case

A =

(
a
b

)
.

In the general case, as R is a PID, note that we may find x and y
such that

d = xa+ yb.

Note that the gcd of x and y must be 1. Therefore we may find u and
v such that

1 = ux+ vy.

Let

B =

(
x y
−v u

)
.

Note that the determinant of B is

xu+ yv = 1.

Thus B is invertible, with inverse(
u −y
v x

)
.

On the other hand,

BA =

(
d

−va+ ub

)
.

Note that the entries on the main diagonal are determined.

Definition-Lemma 14.5. Let A be a matrix with entries in a PID.
The ith determinant divisor, denoted di(A), is the greatest com-

mon divisor of all i× i minors of A.
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The entries on the main diagonal of the Smith normal form are the
ratios

di(A)

di−1(A)

(d0(A) = 1 by convention).

Proof. The determinant of an invertible matrix is invertible and so
pre- and post-multiplication by invertible matrices do not change the
ith determinant divisor.

On the other hand the ith determinant divisor of a matrix in Smith
normal form is simply the product of the first i entries on the main
diagonal. �

Corollary 14.6. Let M be a finitely generated module over a PID R.
Then M is isomorphic to F ⊕ T , where F is a free module and T is

isomorphic to, either

(1)

R/〈d1〉 ⊕R/〈d2〉 ⊕ · · · ⊕R/〈dn〉,
where di divides di+1, or

(2)

R/〈pm1
1 〉 ⊕R/〈pm2

2 〉 ⊕ · · · ⊕R/〈pmn
n 〉,

where pi is a prime.

Proof. By the Chinese Remainder Theorem it suffices to prove the first
classification result. By assumption M is isomorphic to a quotient of
Rn by an image of Rm. By (14.2) we may assume the corresponding
matrix is in Smith normal form. Now note that the rows that contain
only zeroes, correspond to the free part, and there is an obvious cor-
rrespondence between the non-zero rows and the direct summands of
the torsion part. �

One special case deserves attention:

Corollary 14.7. Let G be a finitely generated abelian group.
Then G is isomorphic to Zr × T , where T is isomorphic to

(1)

Zd1 × Zd2 × · · · × Zdn ,

where d1, d2, . . . , dn are positive integers and di divides di+1, or
(2)

Zp
m1
1
× Zp

m2
2
× · · · × Zpmn

n
.

where p1, p2, . . . , pn are primes.
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Really the best way to illustrate the proof of these results, which are
not hard, is to illustrate the methods by an example. Suppose we are
given 3 8 7 9

2 4 6 6
1 2 2 1

 .

The gcd is 1. Thus we first switch the third and first rows1 2 2 1
2 4 6 6
3 8 7 9

 .

As we now have a 1 in the first row, we can now eliminate 2 and 3
from the first column, a la Gaussian elimination, to get1 2 2 1

0 0 2 4
0 2 1 6

 .

Now eliminate the entries in the first row1 0 0 0
0 0 2 4
0 2 1 6

 .

Now we switch the second and third columns,1 0 0 0
0 2 0 4
0 1 2 6


and then the second and third rows,1 0 0 0

0 1 2 6
0 2 0 4

 .

Now eliminate as before, 1 0 0 0
0 1 0 0
0 0 −4 −8


Now multiply the third row by −1 and eliminate the 8, to get1 0 0 0

0 1 0 0
0 0 4 0

 .

Now we have a matrix in Smith normal form.
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This corrresponds to a Z-linear map

φ : Z4 −→ Z3.

It follows then that we have (Z ⊕ Z ⊕ Z)/(Z ⊕ Z ⊕ 4Z) ' Z4. The
free part is zero and the torsion part is Z4.

Suppose instead we have the matrix:
1 0 0 0
0 3 0 0
0 0 30 0
0 0 0 0
0 0 0 0

 .

This matrix is already in Smith normal form. This represents a Z-linear
map

Z4 −→ Z5,

in the standard way. It follows then that we have

(Z⊕Z⊕Z⊕Z⊕Z)/(Z⊕3Z⊕30Z) ' Z3⊕Z30⊕Z⊕Z ' Z×Z×Z3×Z30.

The free part is Z× Z and the torsion part is

Z3 × Z30 ' Z2 × Z3 × Z3 × Z5.
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