
11. Noetherian Rings and Modules

First we need some more notation. We want to talk about both rings
and modules being finitely generated. Therefore we need to introduce
some notation for the subring generated by a set, distinguishable from
the module (i.e ideal) generated by the same set.

Definition 11.1. Let R be a ring, let S be a subring and let X be a
subset of R. The smallest ring generated by X ∪ S is denoted S[X].

We say that X generates R, over S, if S[X] = R.

We have already seen some examples of this. For example, the Gauss-
ian integers are denoted Z[i]. One can think of this as the smallest ring
in C containing Z and i.

As already observed, if R is a ring, then R need not even be finitely
generated as a ring, but as an R-module, R is generated by 1, R = 〈1〉.
Definition 11.2. Let M be an R-module.

We say that M is Noetherian if every submodule is finitely gener-
ated. We say that a ring is Noetherian if it is Noetherian as a module
over itself.

Clearly every PID is Noetherian since, in a PID, every ideal has one
generator. In particular every field is Noetherian and moreover every
Euclidean domain is Noetherian, so that the polynomial ring over a
field is Noetherian, and both Z and Z[i] are Noetherian.

Note that a vector space is Noetherian if and only if it has finite
dimension.

Lemma 11.3. An R-module M is Noetherian if and only if the set of
submodules of M satisfies the ACC.

Proof. Suppose that M is Noetherian and let

N1 ⊂ N2 ⊂ N3 ⊂ . . .

be an ascending chain of submodules of M . Let N be the union. It is
easy to check that N is a submodule of M . As M is Noetherian, N
is finitely generated. Suppose that n1, n2, . . . , nk are generators of N .
For each 1 ≤ α ≤ k, there is an index iα, such that nα ∈ Niα . Let i be
the maximum of the iα. Then nα ∈ Ni, for all 1 ≤ α ≤ k. It follows
that

N = 〈n1, n2 . . . , nk〉 ⊂ Ni ⊂ Nl ⊂ N,

for all l ≥ i. But then we must have equality, so that N = Nl, for all
l ≥ i. Thus the set of submodules of M satisfies the ACC.

Now suppose that the set of submodules of M satisfies the ACC.
Suppose that M is not Noetherian. Let N be a submodule of M which
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is not finitely generated. Pick a sequence of elements of N , recursively,
as follows. Put n0 = 0. If we have already picked n1, n2, . . . , nk, then
let Nk be the submodule they generate. Clearly Nk ⊂ N . Nk must
be a proper subset of N , as we are assuming that N is not finitely
generated. Pick nk+1 ∈ N −Nk. Then

N1 ⊂ N2 ⊂ N3 ⊂ . . .

is a strictly ascending chain of submodules, a contradiction. �

Definition 11.4. Suppose that we have a sequence of R-modules,

. . .Mi−1
f- Mi

g- Mi+1 . . .

We say that this sequence is exact at Mi, if the kernel of g is equal
to the image of f . We say that this sequence is exact, if it is exact at
each term. A short exact sequence is an exact sequence

0 −→M −→ N −→ P −→ 0.

Lemma 11.5.

(1)

0 - M
f- N

is exact at M if and only if f is injective.
(2)

M
f- N - 0

is exact at N if and only if f is surjective.

Proof. Easy. �

Note that there is an obvious short exact sequence

0 −→M −→M ⊕N −→ N −→ 0.

Note also the exact sequence

0 −→ Z −→ Z −→ Z2 −→ 0,

where the first map is multiplication by 2 (note that this map is a
module homomorphism but not a ring homomorphism).

Lemma 11.6. Let

0 −→M −→ N −→ P −→ 0

be a short exact sequence of R-modules.
Then N is Noetherian if and only if M and P are Noetherian.
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Proof. Suppose that N is Noetherian. Then M is (isomorphic to) a
submodule of N . Thus any submodule of M is automatically a sub-
module of N and hence automatically finitely generated. Thus M is
certainly Noetherian. There are two ways to see that P is Noetherian.

First suppose we are given a submodule P ′ of P . Let N ′ be the
inverse image of P ′. Then N ′ is a submodule of N . As N is Noetherian,
it follows that N ′ has a finite number of generators. The image of
these generators in P , generate the image of N ′, which as N −→ P is
surjective, is equal to P ′. Thus P ′ is finitely generated.

Here is another way to prove that P is Noetherian. Pick an ascending
chain of submodules

P1 ⊂ P2 ⊂ P3 ⊂ . . .

of P . Let
N1 ⊂ N2 ⊂ N3 ⊂ . . .

be the corresponding ascending chain in N . As N is Noetherian this
chain must stabilise. Thus there is an index k, such that Ni = Nj, for
all i and j at least k. As N −→ P is surjective, it follows that the
image of Ni = Pi. In particular Pi = Pj for all i and j at least k. Thus
every ascending chain of modules in P stabilises and P is Noetherian.

Now suppose that M and P are Noetherian. Suppose that

N1 ⊂ N2 ⊂ N3 ⊂ . . .

is an ascending chain in N . Let Pi be the image of Ni and let Mi be
the intersection of Ni with M . Then we get two ascending chains, one
in M ,

M1 ⊂M2 ⊂M3 ⊂ . . . ,

and one in P ,
P1 ⊂ P2 ⊂ P3 ⊂ . . . .

As M and P are Noetherian, both chains eventually stabilise. It follows
that we can find a common index k, so that Mi = Mj and Pi = Pj, for
all i and j at least k. On the other hand, note that if Mi = Mj and
Pi = Pj, then in fact Ni = Nj; indeed if Mi = Mj then

Pi '
Ni

Mi

⊂ Nj

Mi

' Pj.

If Pi = Pj then Ni/Mi = Nj/Mi. But by the correspondence theorem,
submodules of Nj/Mi correspond to submodules of Nj that contain Mi,
so that if Pi = Pj then Ni = Nj. Thus every chain of submodules in N
eventually stabilises. �

Proposition 11.7. Every finitely generated module M over a Noether-
ian ring R is Noetherian.
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Proof. By induction on n and the short exact sequence

0 −→ Rn−1 −→ Rn −→ R −→ 0

we see that the direct sum of R with itself n times is Noetherian. On the
other hand we have already seen that every finitely generated module
is a quotient of a Rn, for some n. Thus M is a quotient of a Noetherian
module and so it is Noetherian. �

Theorem 11.8 (Hilbert’s Basis Theorem). Let R be a Noetherian ring.
Then R[x] is Noetherian.

Proof. Let I be an ideal of R[x]. We have to find a finite set of gener-
ators of I.

Let J ⊂ R be the set of all coefficients of the leading terms of every
element of I. I claim that J is an ideal in R. Suppose that a and b
belong to J . Then there are two polynomials f(x) and g(x) ∈ I such
that the leading coefficient of f(x) is a and the leading coefficient of
g(x) is b,

f(x) = axm + . . . and g(x) = bxn + . . . .

We may as well assume that m ≤ n. Multiplying f by xn−m, we may
then assume that m = n. In this case the leading coefficient of f + g
is a+ b. Now suppose that r ∈ R. Then rf ∈ I has leading coefficient
ra, so that ra ∈ J . Thus J is an ideal.

As R is Noetherian, J has a finite set of generators, a1, a2, . . . , ak.
Pick fi(x) ∈ I such that the leading coefficient of fi(x) is ai. Let m be
the maximum of the degrees di of each fi(x).

Pick a polynomial f(x) in I. Suppose that the degree d of f(x) is
at least m. Let a be the leading coefficient of f(x). As a ∈ J , we may
find r1, r2, . . . , rk such that

a = r1a1 + r2a2 + · · ·+ rkak.

Consider

g(x) = f(x)−
∑

rix
d−difi(x).

Then the coefficient of xd in g(x) is zero, so that g(x) has degree less
than d. Continuing in this way, we can find h(x) ∈ 〈f1, f2, . . . , fk〉, so
that

f(x) = g(x) + h(x),

where g(x) has degree at most m−1. Let M be the R-module generated
by 1, x, x2, . . . xm−1. Then g(x) ∈ I ∩M . As R is Noetherian and M
is finitely generated, M is Noetherian. As I ∩M is a submodule of
M , it follows that we may find a finite set of generators g1, g2, . . . , gl
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for I ∩ M . In this case f1, f2, . . . , fk, g1, g2, . . . , gl are a finite set of
generators for I.

Thus R[x] is Noetherian. �

5


	11. Noetherian Rings and Modules

