10. Modules

Definition 10.1. Let R be a commutative ring. A module over R is a set M together with a binary operation, denoted + , which makes M into an abelian group, with 0 as the identity element, together with a rule of multiplication •,

$$
\begin{gathered}
R \times M \longrightarrow M \\
(r, m) \longrightarrow r \cdot m
\end{gathered}
$$

such that the following hold,
(1) $1 \cdot m=m$,
(2) $(r s) \cdot m=r \cdot(s \cdot m)$,
(3) $(r+s) \cdot m=r \cdot m+s \cdot m$,
(4) $r \cdot(m+n)=r \cdot m+r \cdot n$,
for every r and $s \in R$ and m and $n \in M$.
We will also say that M is an R-module and often refer to the multiplication as scalar multiplication. There are three key examples of modules.

Suppose that F is a field. Then an F-module is precisely the same as a vector space. Indeed, in this case (10.1) is nothing more than the definition of a vector space.

Now suppose that $R=\mathbb{Z}$. What are the \mathbb{Z}-modules? Clearly given a \mathbb{Z}-module M, we get a group. Just forget the fact that one can multiply by the integers. On the other hand, in fact multiplication by an element of \mathbb{Z} is nothing more than addition of the corresponding element of the group with itself the appropriate number of times. That is, given an abelian group G, there is a unique way to make it into a Z-module,

$$
\begin{gathered}
\mathbb{Z} \times G \longrightarrow G \\
(n, g) \longrightarrow n \cdot g=g+g+g+\cdots+g
\end{gathered}
$$

where we just add g to itself n times. Note that uniqueness is forced by (1) and (3) of (10.1), by an obvious induction. It follows then that the data of a \mathbb{Z}-module is precisely the same as the data of an abelian group.

Let R be a ring. Then R can be considered as a module over itself. Indeed the rule of multiplication as a module is precisely the rule of multiplication as a ring. The axioms for a ring ensure that the axioms for a module hold.

It turns out to be extremely useful to have one definition of an object that captures all three notions: vector spaces, abelian groups and rings.

Here is a very non-trivial example. Let F be a field. What does an $F[x]$-module look like? Well obviously any $F[x]$-module is automatically a vector space over F. So we are given a vector space V, with the additional data of how to multiply by x. Multiplication by x induces a transformation of V. The axioms for a module ensure that this transformation is in fact linear.

On the other hand, suppose we are given a linear transformation ϕ of a vector space V. We can define an $F[x]$-module as follows. Given $v \in V$, and $f(x) \in F[x]$, define

$$
f(x) \cdot v=f(\phi) v
$$

where we substitute x for ϕ. Note that ϕ^{2}, and so on, means just apply ϕ twice and that we can add linear transformations. Thus the data of an $F[x]$-module is exactly the data of a vector space over F, plus a linear transformation ϕ.

Note that the definition of $f(\phi)$ hides one subtlety. Suppose that one looks at polynomials in two variables $f(x, y)$. Then it does not really make sense to substitute for both x and y, using two linear transformations ϕ and ψ. The problem is that ϕ and ψ won't always commute, so that the meaning of $x y$ is unclear (should we replace this by $\phi \psi$ of $\psi \phi$?). Of course the powers of a single linear transformation will automatically commute, so that this problem disappears for a polynomial of one variable.

Lemma 10.2. Let $\phi: R \longrightarrow S$ be a ring homomorphism. Let M be an S-module.

Then M is an R-module in a natural way.
Proof. It suffices to define a scalar multiplication map

$$
R \times M \longrightarrow M
$$

and show that this satisifies the axioms for a module.
Given $r \in R$ and $m \in M$, set

$$
r \cdot m=\phi(r) \cdot M
$$

It is easy to check the axioms for a module.
For example, every R-module M is automatically a \mathbb{Z}-module. There are two ways to see this. First every R-module is in particular an abelian group, by definition, and an abelian group is the same as a \mathbb{Z}-module. Second observe that there is a unique ring homomorphism

$$
\mathbb{Z} \longrightarrow R
$$

and this makes M into an \mathbb{Z}-module by (10.2).

Lemma 10.3. Let M be an R-module. Then
(1) $r \cdot 0=0$, for every $r \in R$.
(2) $0 \cdot m=0$, for every $m \in M$.
(3) $-1 \cdot m=-m$, for every $m \in M$.

Proof. We have

$$
\begin{aligned}
r \cdot 0 & =r \cdot(0+0) \\
& =r \cdot 0+r \cdot 0 .
\end{aligned}
$$

Cancelling, we have (1). For (2), observe that

$$
\begin{aligned}
0 \cdot m & =(0+0) \cdot m \\
& =0 \cdot m+0 \cdot m .
\end{aligned}
$$

Cancelling, gives (2). Finally

$$
\begin{aligned}
0 & =0 \cdot m \\
& =(1+-1) \cdot m \\
& =1 \cdot m+(-1) \cdot m \\
& =m+(-1) \cdot m,
\end{aligned}
$$

so that $(-1) \cdot m$ is indeed the additive inverse of m.
Definition 10.4. Let M and N be two R-modules.
An R-module homomorphism is a map

$$
\phi: M \longrightarrow N
$$

such that

$$
\phi(m+n)=\phi(m)+\phi(n) \quad \text { and } \quad \phi(r m)=r \phi(n) .
$$

We will also say that ϕ is R-linear.
In other words, ϕ is a homomorphism of groups that also respects scalar multiplication. If F is a field, then an F-linear map is the same as a linear map, in the sense of linear algebra. If $R=\mathbb{Z}$, a \mathbb{Z}-module homomorphism is nothing but a group homomorphism.

Note that we now have a category, the category of all R-modules; the objects are R-modules, and the morphisms are R-linear maps. Given any ring R, the associated category captures a lot of the properties of R.

Lemma 10.5. Let M be an R-module and let $r \in R$.
Then the natural map

$$
M \longrightarrow M
$$

given by $m \longrightarrow r m$ is R-linear.

Proof. Easy check left as an exercise for the reader.
Definition 10.6. Let M be an R-module.
A submodule N of M is a subset that is a module with the inherited addition and scalar multiplication.

Let F be a field. Then a submodule is the same as a subvector space. Let $R=\mathbb{Z}$. Then a submodule is the same as a subgroup. Consider R as a module over itself. Then a subset I is a submodule if and only if I is an ideal in the ring R.

Lemma 10.7. Let M be an R-module and let N be a subset of M.
Then N is a submodule of M if and only if it is closed under addition and scalar multiplication.

Proof. Easy exercise for the reader.
Definition-Lemma 10.8. Let $\phi: M \longrightarrow N$ be an R-module homomorphism. The kernel of ϕ, denoted $\operatorname{Ker} \phi$, is the inverse image of the zero element of N.

The kernel is a submodule.
Proof. Easy exercise for the reader.
Definition-Lemma 10.9. Let M be an R-module and let N be a submodule.

Then the quotient group M / N can be made into a quotient module in an obvious way. Furthermore there is a natural R-module homomorphism

$$
u: M \longrightarrow M / N
$$

which is universal in the following sense.
Let $\phi: M \longrightarrow P$ be any R-module homomorphism, whose kernel contains N. Then there is a unique induced R-module homomorphism $\psi: M / N \longrightarrow P$, such that the following diagram commutes,

Proof. Easy exercise for the reader.
As always, a standard consequence is:
Theorem 10.10. Let

$$
\phi: M \longrightarrow N
$$

be a surjective R-linear map, with kernel K.

Then

$$
N \simeq M / K
$$

Definition 10.11. Let M be an R-module and let X be a subset.
The R-module generated by X, denoted $\langle X\rangle$, is equal to the smallest submodule that contains X.

We say that the set X generates M if the submodule generated by X is the whole of M. We say that M is finitely generated if it is generated by a finite set. We say that M is cyclic if it is generated by a single element.

Note that the definition of $\langle X\rangle$ makes sense; it is easy to adapt the standard arguments. Suppose that R is a field, so that an R-module is a vector space. Then a vector space is finitely generated if and only if it has finite dimension and it is cyclic if and only if it has dimension at most one. If $R=\mathbb{Z}$, then these are the standard definitions.

Note that a ring R is automatically finitely generated. In fact it is cyclic, considered as a module over itself, generated by 1 , that is $R=\langle 1\rangle$. This is clear, since if $r \in R$, then $r=r \cdot 1 \in\langle 1\rangle$. This is our first indication that the notion of being finitely generated is not the right one; it is not strong enough.

Lemma 10.12. Let M be a cyclic R-module.
Then M is isomorphic to a quotient of R.
Proof. Let $m \in M$ be a generator of M. Define a map

$$
\phi: R \longrightarrow M
$$

by sending $r \in R$ to $r m$. It is easy to check that this map is R linear. Since the image of ϕ contains $m=\phi(1)$, and m generates M, it follows that ϕ is surjective. The result follows by the Isomorphism Theorem.

Definition 10.13. Let M and N be two R-modules.
The direct sum of M and N, denoted $M \oplus N$, is the R-module, which as a set is the Cartesian product of M and N, with addition and multiplication defined coordinate by coordinate:
$\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)=\left(m_{1}+m_{2}, n_{1}+n_{2}\right) \quad$ and $\quad r(m, n)=(r m, r n)$.
Note that the direct sum is a direct sum in the category of R modules. Note also that the direct sum of R with itself is generated by $(1,0)$ and $(0,1)$.
Definition 10.14. Let M be an R-module.
We say that M is free if it is isomorphic to a direct sum of copies (possibly infinite) of R. We say that generators X of M are free
generators if there is an identification of M with a direct sum of copies of R, under which the standard generators of the direct sum correspond to X.

Suppose that F is a field. Then a set of free generators for a vector space V is the same as a basis of V. Since every vector space admits a basis, it follows that every vector space is free. R is a free module over itself, generated by 1 , or indeed by any invertible element.

A set of free generators comes with an extremely useful universal property:

Lemma 10.15. Let M be a free R-module, freely generated by X. Let N be any R-module and let $f: X \longrightarrow N$ be any map.

Then there is unique induced R-module homorphism $\phi: M \longrightarrow N$ which makes the following diagram commute

Proof. Let $m \in M$. By assumption, there are $x_{1}, x_{2}, \ldots, x_{k} \in X$ and $r_{1}, r_{2}, \ldots, r_{k} \in R$, such that

$$
m=r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{k} x_{k} .
$$

In this case, we are obliged to send m to

$$
r_{1} f\left(x_{1}\right)+r_{2} f\left(x_{2}\right)+\cdots+r_{k} f\left(x_{k}\right)
$$

if we want ϕ to be R-linear. It suffices to check that this does indeed define an R-linear map, which is easy to check.

If R is a field, this is equivalent to saying that a linear map is determined by its action on basis and that given any choice of where to send the elements of a basis, there is a unique linear map. One obvious consequence of (10.15) and (10.10) is that every module is a quotient of a free module, that is, a direct sum of copies of R. In particular

Lemma 10.16. Let M be a finitely generated R-module. Then M is a quotient of R^{n}, the direct sum of R with itself n times.

