10. MODULES

Definition 10.1. Let R be a commutative ring. A module over R
15 a set M together with a binary operation, denoted +, which makes
M into an abelian group, with O as the identity element, together with
a rule of multiplication -,

RxM—M
(r,m) — r-m,
such that the following hold,
(1) 1-m =m,
(2) (rs) -m=r-(s-m),
(8) (r+s)-m=r-m+s-m,
(4)r-(m+n)=r-m+r-n,
for everyr and s € R and m andn € M.

We will also say that M is an R-module and often refer to the mul-
tiplication as scalar multiplication. There are three key examples of
modules.

Suppose that F'is a field. Then an F-module is precisely the same
as a vector space. Indeed, in this case is nothing more than the
definition of a vector space.

Now suppose that R = Z. What are the Z-modules? Clearly given
a Z-module M, we get a group. Just forget the fact that one can
multiply by the integers. On the other hand, in fact multiplication by
an element of Z is nothing more than addition of the corresponding
element of the group with itself the appropriate number of times. That
is, given an abelian group G, there is a unique way to make it into a
Z-module,

7Zx G — G,

(n,g) —n-g=g+g+g+--+g
where we just add g to itself n times. Note that uniqueness is forced
by (1) and (3) of (10.1), by an obvious induction. It follows then that
the data of a Z-module is precisely the same as the data of an abelian
group.

Let R be a ring. Then R can be considered as a module over itself.
Indeed the rule of multiplication as a module is precisely the rule of
multiplication as a ring. The axioms for a ring ensure that the axioms
for a module hold.

It turns out to be extremely useful to have one definition of an object

that captures all three notions: vector spaces, abelian groups and rings.
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Here is a very non-trivial example. Let F' be a field. What does
an Flr]-module look like? Well obviously any F|x]-module is auto-
matically a vector space over F. So we are given a vector space V/,
with the additional data of how to multiply by x. Multiplication by x
induces a transformation of V. The axioms for a module ensure that
this transformation is in fact linear.

On the other hand, suppose we are given a linear transformation ¢
of a vector space V. We can define an F[z]-module as follows. Given

veV,and f(z) € Flz], define
f@)-v=Fflo),

where we substitute  for ¢. Note that ¢?, and so on, means just apply
¢ twice and that we can add linear transformations. Thus the data
of an F[z]-module is exactly the data of a vector space over F, plus a
linear transformation ¢.

Note that the definition of f(¢) hides one subtlety. Suppose that one
looks at polynomials in two variables f(z,y). Then it does not really
make sense to substitute for both x and y, using two linear transfor-
mations ¢ and 1. The problem is that ¢ and 1) won’t always commute,
so that the meaning of zy is unclear (should we replace this by ¢ of
1@?). Of course the powers of a single linear transformation will auto-
matically commute, so that this problem disappears for a polynomial
of one variable.

Lemma 10.2. Let ¢: R — S be a ring homomorphism. Let M be an
S-module.
Then M 1is an R-module in a natural way.

Proof. Tt suffices to define a scalar multiplication map
RxM—M

and show that this satisifies the axioms for a module.
Given r € R and m € M, set

r-m=a¢(r) M.
It is easy to check the axioms for a module. 0

For example, every R-module M is automatically a Z-module. There
are two ways to see this. First every R-module is in particular an
abelian group, by definition, and an abelian group is the same as a
Z-module. Second observe that there is a unique ring homomorphism

7 — R
and this makes M into an Z-module by ((10.2]).
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Lemma 10.3. Let M be an R-module. Then
(1) r-0=0, for every r € R.
(2) 0-m =0, for every m € M.
(3) —1-m = —m, for every m € M.
Proof. We have
r-0=r-(0+0)
=r-0+7r-0.
Cancelling, we have (1). For (2), observe that
0-m=(0+0)-m

=0-m+0-m.
Cancelling, gives (2). Finally
0=0-m
=1+-1)-m
=1-m+(-1)-m
=m+(=1)-m,
so that (—1) - m is indeed the additive inverse of m. O

Definition 10.4. Let M and N be two R-modules.
An R-module homomorphism is a map

¢o: M — N
such that
p(m+n)=9¢(m)+d(n) and  ¢(rm)=ro(n).

We will also say that ¢ is R-linear.

In other words, ¢ is a homomorphism of groups that also respects
scalar multiplication. If F'is a field, then an F-linear map is the same
as a linear map, in the sense of linear algebra. If R = Z, a Z-module
homomorphism is nothing but a group homomorphism.

Note that we now have a category, the category of all R-modules; the
objects are R-modules, and the morphisms are R-linear maps. Given
any ring R, the associated category captures a lot of the properties of
R.

Lemma 10.5. Let M be an R-module and let r € R.
Then the natural map
M—M

giwen by m — rm is R-linear.



Proof. Easy check left as an exercise for the reader. O

Definition 10.6. Let M be an R-module.
A submodule N of M is a subset that is a module with the inherited
addition and scalar multiplication.

Let I be a field. Then a submodule is the same as a subvector space.
Let R = 7Z. Then a submodule is the same as a subgroup. Consider R
as a module over itself. Then a subset I is a submodule if and only if
[ is an ideal in the ring R.

Lemma 10.7. Let M be an R-module and let N be a subset of M.
Then N is a submodule of M if and only if it is closed under addition
and scalar multiplication.

Proof. Easy exercise for the reader. O

Definition-Lemma 10.8. Let ¢: M — N be an R-module homo-
morphism. The kernel of ¢, denoted Ker ¢, is the inverse image of
the zero element of N.

The kernel is a submodule.

Proof. Easy exercise for the reader. 0

Definition-Lemma 10.9. Let M be an R-module and let N be a sub-
module.

Then the quotient group M /N can be made into a quotient module
in an obvious way. Furthermore there is a natural R-module homomor-
phism

u: M — M/N,
which s universal in the following sense.

Let ¢: M — P be any R-module homomorphism, whose kernel
contains N. Then there is a unique induced R-module homomorphism
: M/N — P, such that the following diagram commutes,

M—¢>P
w//

z

M/N.
Proof. Easy exercise for the reader. U
As always, a standard consequence is:

Theorem 10.10. Let
¢o: M — N
be a surjective R-linear map, with kernel K.
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Then
N~M/K.

Definition 10.11. Let M be an R-module and let X be a subset.

The R-module generated by X, denoted (X), is equal to the
smallest submodule that contains X .

We say that the set X generates M if the submodule generated by
X is the whole of M. We say that M is finitely generated if it is
generated by a finite set. We say that M 1is cyclic if it is generated by
a single element.

Note that the definition of (X) makes sense; it is easy to adapt the
standard arguments. Suppose that R is a field, so that an R-module
is a vector space. Then a vector space is finitely generated if and only
if it has finite dimension and it is cyclic if and only if it has dimension
at most one. If R = Z, then these are the standard definitions.

Note that a ring R is automatically finitely generated. In fact it
is cyclic, considered as a module over itself, generated by 1, that is
R = (1). This is clear, since if r € R, then r = r -1 € (1). This is our
first indication that the notion of being finitely generated is not the
right one; it is not strong enough.

Lemma 10.12. Let M be a cyclic R-module.
Then M 1is isomorphic to a quotient of R.

Proof. Let m € M be a generator of M. Define a map
¢o: R— M

by sending r € R to rm. It is easy to check that this map is R-
linear. Since the image of ¢ contains m = ¢(1), and m generates M,
it follows that ¢ is surjective. The result follows by the Isomorphism
Theorem. U

Definition 10.13. Let M and N be two R-modules.

The direct sum of M and N, denoted M ® N, is the R-module,
which as a set is the Cartesian product of M and N, with addition and
multiplication defined coordinate by coordinate:

(my1,n1)+(mag,ny) = (my+ma, ny+ns) and r(m,n) = (rm,rn).

Note that the direct sum is a direct sum in the category of R-
modules. Note also that the direct sum of R with itself is generated by
(1,0) and (0,1).

Definition 10.14. Let M be an R-module.
We say that M s free if it is isomorphic to a direct sum of copies

(possibly infinite) of R. We say that generators X of M are free
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generators if there is an identification of M with a direct sum of
copies of R, under which the standard gemerators of the direct sum
correspond to X.

Suppose that F' is a field. Then a set of free generators for a vector
space V' is the same as a basis of V. Since every vector space admits a
basis, it follows that every vector space is free. R is a free module over
itself, generated by 1, or indeed by any invertible element.

A set of free generators comes with an extremely useful universal

property:
Lemma 10.15. Let M be a free R-module, freely generated by X. Let
N be any R-module and let f: X — N be any map.

Then there is unique induced R-module homorphism ¢: M — N
which makes the following diagram commute

x 1. N

’
é .7
’
’
’

M
Proof. Let m € M. By assumption, there are xq,xs,...,2, € X and
ri,T9,...,7Tr € R, such that
m = 1oy + oo + -+ + rplg.

In this case, we are obliged to send m to

rif(z) +raf(ze) + -+ rf (),
if we want ¢ to be R-linear. It suffices to check that this does indeed
define an R-linear map, which is easy to check. O

If R is a field, this is equivalent to saying that a linear map is de-
termined by its action on basis and that given any choice of where to
send the elements of a basis, there is a unique linear map. One obvious

consequence of ((10.15)) and ((10.10)) is that every module is a quotient

of a free module, that is, a direct sum of copies of R. In particular

Lemma 10.16. Let M be a finitely generated R-module. Then M is
a quotient of R™, the direct sum of R with itself n times.
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