
1. Rings

We introduce the main object of study for 100B.

Definition 1.1. A ring is a set R, together with two binary operations
addition and multiplication, denoted + and · respectively, which satisfy
the following axioms. Firstly R is an abelian group under addition,
with zero as the identity:

(1) (Associativity) For all a, b and c in R,

(a + b) + c = a + (b + c).

(2) (Zero) There is an element 0 ∈ R such that for all a in R,

a + 0 = 0 + a.

(3) (Additive Inverse) For all a in R, there exists b ∈ R such that

a + b = b + a = 0.

b will be denoted −a.
(4) (Commutavity) For all a and b in R,

a + b = b + a.

Secondly multiplication is also associative and there is a multiplicative
identity 1.

(5) (Associativity) For all a, b and c in R,

(a · b) · c = a · (b · c).
(6) (Unit) There is an element 1 6= 0 ∈ R such that for all a in R,

a · 1 = a = 1 · a.
Finally we require that addition and multiplication are compatible in

an obvious sense.

(7) (Distributivity) For all a, b and c in R, we have

a · (b + c) = a · b + a · c,
(b + c) · a = b · a + c · a.

Unfortunately there is no standard definition of a ring. In particular
some books do not require the existence of unity, or if they do require
it, then they do not necessarily require that it is not equal to zero.

Example 1.2. The complex numbers C form a ring, with the obvious
multiplication and addition.

Definition 1.3. Let R be a ring and let S be a subset. We say that S
is a subring of R, if S becomes a ring, with the induced addition and
multiplication.
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Lemma 1.4. Let R be a ring and let S be a subset that contains 1.
Then S is a subring if and only if S is closed under addition, additive

inverses and multiplication.

Proof. Similar proof as for groups. �

Note that we require S to contain 1. Since we don’t necessarily have
multiplicative inverses, just because S is non-empty, does not force S
to contain 1.

Example 1.5. The following tower of subsets

Z ⊂ Q ⊂ R ⊂ C

is in fact a tower of subrings.

A more interesting example is given by taking all rational numbers
of the form a/b, where a and b are integers and b is odd. This set is a
subring of the rational numbers. Indeed it contains 1 and it is easy to
see that it is closed under addition and multiplication.

Finally consider the Gaussian integers, defined as all complex num-
bers of the form

a + bi,

where a and b are integers. It is easy to see that the Gaussian integers
form a subring of the complex numbers.

Example 1.6. Let Zn denote the integers modulo n.

We showed in 100A that the law of addition and multiplication de-
scends from Z down to Zn. With these rules of addition and multi-
plication, Zn becomes a ring. Indeed [0] plays the role of zero and [1]
plays the role of the identity. In fact it was proved in 100A that Zn is
a group under addition and it is not much more work to prove that Zn

is in fact a ring. Moreover we will see later that this is an example of
a much more general phenomena.

It is interesting to see what happens in a specific example. Suppose
that n = 6. In this case 0 = [0] and 1 = [1]. However note that one
curious feature is that

[2][3] = [2 · 3] = [6] = [0],

so that the product of two non-zero elements of R might in fact be
zero.

Definition-Lemma 1.7. Let X be any set and let R be any ring. Then
the set F of functions from X into R becomes a ring, with addition and
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multiplication defined pointwise. That is to say, given f and g ∈ F ,
define f + g by the rule,

(f + g)(x) = f(x) + g(x) ∈ R,

where x ∈ X and addition is in R. Similarly define the product f · g of
f and g by the rule,

(f · g)(x) = f(x) · g(x) ∈ R.

Then the zero function f , defined by the rule

f(x) = 0 ∈ R,

for all x ∈ X, plays the role of zero and the function g, defined by the
rule

g(x) = 1 ∈ R,

plays the role of 1.

Proof. Again, all of this is easy to check. We check associativity of
addition and leave the rest to the reader. Suppose that f , g and h are
three functions from X to R. We want to prove

(f + g) + h = f + (g + h).

Since both sides are functions from X to R, it suffices to prove that
they have the same effect on any element x ∈ X.

((f + g) + h)(x) = (f + g)(x) + h(x)

= (f(x) + g(x)) + h(x)

= f(x) + (g(x) + h(x))

= f(x) + (g + h)(x)

= (f + (g + h))(x). �

Here is a very interesting example of this type.

Example 1.8. Let X = [0, 1] and R = R.

Then we are looking at the collection of all functions from [0, 1] into
the reals. In this case there are lots of interesting subrings. For example
consider C[0, 1], the set of all continuous functions from [0, 1] into R.
Since the sum and product of two continuous functions is continuous,
it follows that this is a subring of the set of all functions. Similarly
we could look at the space of all differentiable (or twice, thrice, up to
infinitely differentiable) functions.
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Definition-Lemma 1.9. Let R be a ring and let n be a positive integer.
Mn(R) denotes the set of all n × n matrices with entries in R. Given
two such matrices A = (aij) and B = (bij), we define A+B as (aij+bij).
The product of A and B is also defined in the usual way. That is, the ij
entry of AB is the dot product of the ith row of A and the jth column
of B.

With this rule of addition and multiplication Mn(R) becomes a ring,
with zero given as the zero matrix (every entry equal to zero) and 1
given as the matrix with ones on the main diagonal and zeroes every-
where else.

Proof. Most of this is proved in 100A and that which is not, is left as
an exercise for the reader. �

Note that if n = 1, then M1(R) is simply a copy of R. To fix ideas,
let us consider an easy example.

Example 1.10. Let R = Z6 be the ring of integers modulo six and take
n = 2.

Take

A =

(
3 1
2 4

)
B =

(
1 5
1 2

)
Then

AB =

(
4 5
0 0

)
.

Definition-Lemma 1.11. Let R be a ring and let x be an indetermi-
nate. The polynomial ring R[x] is defined to be the set of all formal
sums

anx
n + an−1x

n + · · ·+ a1x + a0 =
∑

aix
i

where each ai ∈ R. Given two polynomials

f = anx
n + an−1x

n−1 + · · ·+ a1x + a0 =
∑

aix
i

g = bmx
m + bm−1x

m−1 + · · ·+ b1x + b0 =
∑

bix
i

in R[x] the sum of f and g, f + g, is defined as,

f+g = (an+bn)xn+(an−1+bn−1)x
n−1+· · ·+(a1+b1)x+(a0+b0) =

∑
(ai+bi)x

i,

(where we have implicitly assumed that m ≤ n and we set bi = 0, for
i > m) and the product as

fg = cm+nx
m+n+cm+n−1x

m+n−1+· · ·+c1x+c0 =
∑
i

cix
i =

∑
i

(
∑
j

ajbi−j)x
i.
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With this rule of addition and multiplication, R[x] becomes a ring, with
zero given as the polynomial with zero coefficients and 1 given as the
polynomial whose constant coefficient is one and whose other terms are
zero.

Proof. A long and completely uninformative check. �

Note that a polynomial determines a function R −→ R in an obvious
way. If one takes R to be the real numbers then it is well known that
a polynomial is determined by the corresponding function. In general,
however, this is far from true. For example take R = Z2 (the smallest
ring possible, since a ring must contain at least two elements). Then
there are four functions from R to R and there are infinitely many
polynomials. Thus two different polynomials will often determine the
same function.

The final example is a famous and beautiful generalisation of the
complex numbers. The complex numbers are obtained by adding a
formal number i to the real numbers and decreeing that i2 = −1.

Example 1.12. The quaternions are obtained from the real numbers
by adding three new numbers, i, j and k.

Thus the set of all quaternions is equal to the set of all formal sums

a + bi + cj + dk,

where a, b, c and d are real numbers. It is obvious how to define
addition,

(a+bi+cj+dk)+(a′+b′i+c′j+d′k) = (a+a′)+(b+b′)i+(c+c′)j+(d+d′)k.

Multiplication is a litte more complicated. The basic idea is to define
how to multiply any two of i, j and k and from there extend by using
the associative and distributive laws. Thus we define

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.
In this case, we define the multiplication as,

(a + bi + cj + dk)(a′ + b′i + c′j + d′k) = (aa′ − bb′ − cc′ − dd′)

+(ab′+b′a+cd′−dc′)i+(ac′+ca′+db′−bd′)j+(ad′+da′+bc′−b′c)k.
Again it is not so hard to check that this does gives us a ring.

If one look at the real numbers, then the numbers ±1 form a group
under multiplication, isomorphic to Z2. Similarly the complex numbers
±1, ±i form a group under multiplication, isomorphic to Z4. It is in
fact not hard to see that the quaternion numbers, ±1, ±i, ±j and ±k
form a group of order eight under multiplication (if you like, think of
the multiplication rule above as giving generators and relations).
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