HOMEWORK 9, DUE THURSDAY MARCH 14TH

1. Let R be an integral domain and let M be an R-module. We say that $m \in M$ is torsion if there is a non-zero element $r \in R$ such that $r \cdot m=0$.
(i) Show that the subset T of all elements of M which are torsion is a submodule of M.
(ii) What are the torsion elements in
(a) \mathbb{Q} / \mathbb{Z} ?
(b) \mathbb{R} / \mathbb{Z} ?
(c) \mathbb{R} / \mathbb{Q} ?
(iii) Is the \mathbb{Z}-module \mathbb{Q}
(a) torsion-free?
(b) free?
(c) finitely generated?
2. Let R be a PID and let M be a finitely generated module over R.
(i) Show that there is a free module F which is a quotient of M and which is maximal with respect to this property.
(ii) Show that there is an injective R-linear map $F \longrightarrow M$.
(iii) Show that the image of F is not always unique.
3. Let

$$
A=\left(\begin{array}{ccc}
-4 & -6 & 7 \\
2 & 2 & 4 \\
6 & 6 & 15
\end{array}\right) \in M_{3,3}(\mathbb{Z})
$$

(i) Put A into Smith normal form D using elementary operations.
(ii) Check your answer using minors.
(iii) Explain how to find invertible matrices P and Q such that $D=$ $Q A P$.
4. Find the Smith normal form of

$$
\left(\begin{array}{cccc}
2 x-1 & x & x-1 & 1 \\
x & 0 & 1 & 0 \\
0 & 1 & x & x \\
1 & x^{2} & 0 & 2 x-2
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cccc}
x^{2}+2 x & 0 & 0 & 0 \\
0 & x^{2}+3 x+2 & 0 & 0 \\
0 & 0 & x^{3}+2 x^{2} & 0 \\
0 & 0 & 0 & x^{4}+x^{3}
\end{array}\right)
$$

over the ring $\mathbb{R}[x]$.
5. Let G be the abelian group with presentation given by generators a, b and c, and relations $6 a+10 b=0,6 a+15 c=0$ and $10 b+15 c=0$. Determine the structure of G as a product of cyclic groups.
6. Let A be a complex square matrix with characteristic polynomial $(x+1)^{6}(x-2)^{3}$ and minimal polynomial $(x+1)^{3}(x-2)^{2}$. What are all of the possible Jordan normal forms for A ?
7. Describe all conjugacy classes of the following finite groups. For each conjugacy class give the order and the minimal polynomial of an element.
(i)

$$
\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)
$$

(ii)

$$
\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)
$$

Challenge Problems: (Just for fun)

$$
\begin{equation*}
\mathrm{SL}_{2}\left(\mathbb{F}_{4}\right) \tag{iii}
\end{equation*}
$$

the subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{4}\right)$ of matrices with determinant one and

$$
\mathbb{F}_{4}=\frac{\mathbb{F}_{2}[x]}{\left\langle x^{2}+x+1\right\rangle}=\{0,1, \omega, \omega+1\}
$$

is the field with four elements.
8. Let R be a PID, let $F=R^{n}$ be a finitely generated free module over R of rank n and let $M \subset F$ be a free module. We are going to show that M is a free module over R of rank $m \leq n$.
Let $f: R^{n} \longrightarrow R$ be the projection onto the last factor and let G be the kernel. Let $N=M \cap G$.
(i) Show that G is a finitely generated module of rank $n-1$.
(ii) Show that N is a free module of rank l at most $n-1$.
(iii) Let $Q=f(M)$ be the image of M. Show that we may find $e \in M$ such that $f(e)$ generates Q.
(iv) Show that if $f_{1}, f_{2}, \ldots, f_{l}$ are free generators of N then $f_{1}, f_{2}, \ldots, f_{l}, e$ are free generators of M.
(v) Conclude that M is a free module of rank m at most n.
9. If A is a real $n \times n$ square matrix such that $A^{2}+I_{n}=0$ then show that $n=2 m$ is even and A is similar to the matrix in block form

$$
\left(\begin{array}{cc}
0 & -I_{m} \\
I_{m} & 0
\end{array}\right)
$$

10. Let R be the ring of all infinitely differentiable functions from $[-1,1]$ to the real numbers \mathbb{R}. Show that R is not Noetherian.
11. Is there a 9×9 square matrix A such that A^{2} has a Jordan form with blocks of size
(a) 4, 3 and 2 ?
(b) 4, 4 and 1 ?
(Hint: If J is a Jordan block then what is the Jordan canonical form of J^{2} ?).
