HOMEWORK 6, DUE THURSDAY FEBRUARY 22ND

1. Let M be an R-module and let $r \in R$. Show that the map

$$
\phi: M \longrightarrow M \quad \text { given by } \quad m \longrightarrow r m
$$

is R-linear.
2. Prove that a subset N of an R-module is a submodule if and only if it is non-empty and closed under addition and scalar multiplication.
3. Let $\phi: M \longrightarrow N$ be an R-linear map between two R-modules. Prove that the kernel of ϕ is a submodule of M.
4. Let M be an R-module. Prove that the intersection of any set of submodules is a submodule.
5 . Let M be an R-module and let X be any subset of M. Prove the existence of the submodule generated by X.
6 . Let M be an R-module and let X be any set. Show how the set of all maps from X to M becomes an R-module.
7. Let M and N be any two R-modules. Denote by $\operatorname{Hom}_{R}(M, N)$ the set of all R-linear maps from M to N. Show that this set is naturally an R-module.
8. Let M be an R-module and let X be a subset of M. The annihilator I of X, is the subset of all elements r of R, such that $r m=0$, for all elements m of X. Show that I is an ideal of R. Prove also that the annihilator of X is equal to the annihilator of the submodule generated by X.
The next few results refer to the power series ring which is defined as follows. Let R be a commutative ring and let x be an indeterminate. The power series ring in R, denoted $R \llbracket x \rrbracket$, consists of all (possibly infinite) formal sums,

$$
\sum_{n \geq 0} a_{n} x^{n},
$$

where $a_{n} \in R$. Thus if $R=\mathbb{Q}$, then both

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots,
$$

and

$$
1+2!x+3!x^{2}+4!x^{3}+\ldots
$$

are elements of $\mathbb{Q} \llbracket x \rrbracket$, even though the second, considered as a power series in the sense of analysis, does not converge for any $x \neq 0$. Addition and multiplication of elements of $R \llbracket x \rrbracket$ are defined as for polynomials.

The degree of a power series is equal to the smallest n, so that the coefficient of a_{n} is non-zero. Even for a polynomial, in what follows the degree always refers to the degree as a power series.
9. (i) Show that $R \llbracket x \rrbracket$ is a ring.
(ii) Show that $f(x) \in R \llbracket x \rrbracket$ is invertible if and only if the degree of $f(x)$ is zero and the constant term is invertible. What is the inverse of $1-x$?
(iii) Show that if R is an integral domain then the degree of a product is the sum of the degrees.
(iv) Show that if R is an integral domain then so is $R \llbracket x \rrbracket$.
(v) If F is a field then prove that $F \llbracket x \rrbracket$ is a Euclidean domain.
(vi) Show that if F is a field then $F \llbracket x \rrbracket$ is a UFD.
10. (i) See bonus problems.
(ii) Prove that if R is Noetherian then so is $R \llbracket x_{1}, x_{2}, \ldots, x_{n} \rrbracket$, where the last term is defined appropriately.

Challenge Problems: (Just for fun)
10 (i). Show that if R is Noetherian then so is $R \llbracket x \rrbracket$.
11. Let M be a Noetherian R-module. If $\phi: M \longrightarrow M$ is a surjective R-linear map, prove that ϕ is an automorphism. (Hint, consider the submodules, $\left.\operatorname{Ker}\left(\phi^{n}\right)\right)$.

