HOMEWORK 5, DUE THURSDAY FEBRUARY 15TH

1. Chapter 4, §5: 10, 13 (Hint: you might find it easier not to use the hint), 14, 19.
2. Chapter 4, §6. 1, 2, 3, 6-14.
3. Chapter 5, §1. 3, 4.

Challenge Problems: (Just for fun)
4. Chapter 4, §5: 23, 24, 25.
5. We are going to give another proof that if p is a prime congruent to 1 modulo 4 then p is the sum of two squares, $p=a^{2}+b^{2}$, where a and b are natural numbers.
We first suppose that p is any prime.
(a) Which elements of \mathbb{F}_{p} are their own inverses?
(b) Show that

$$
(p-1)!
$$

is congruent to -1 modulo p.
Now suppose that p is congruent to 1 modulo 4.
(c) Show that the square of

$$
\prod_{a=1}^{(p-1) / 2} a
$$

is -1 modulo p.
(d) Show that there is a natural number m such that $m^{2}+1$ is divisible by p.
(e) Conclude that p is not a prime element in the Gaussian integers.
(f) Show that there are natural numbers a and b such that

$$
p=a^{2}+b^{2} .
$$

