HOMEWORK 3, DUE THURSDAY FEBRUARY 1ST

1. Chapter 4, Section 4: 1, 2, 7, 8 .
2. Let R be a ring and let I be an ideal of R, not equal to the whole of R. Suppose that every element not in I is a unit. Prove that I is the unique maximal ideal in R.
3. Let $\phi: R \longrightarrow S$ be a ring homomorphism and suppose that J is a prime ideal of S.
(i) Prove that $I=\phi^{-1}(J)$ is a prime ideal of R.
(ii) Give an example of an ideal J that is maximal such that I is not maximal.
4. Prove that every prime element of an integral domain is irreducible.

Let R be a commutative ring. Our aim is to prove a very strong form of the Chinese Remainder Theorem. First we need some definitions. Let I and J be two ideals. We say that I and J are coprime if $I+J=R$.
5. (a) Show that I and J are coprime if and only if there is an $i \in I$ and a $j \in J$ such that $i+j=1$.
(b) Show that if I and J are coprime then $I J=I \cap J$.

Suppose that $I_{1}, I_{2}, \ldots, I_{k}$ are ideals of R. We say these ideals are pairwise coprime, if for all $i \neq j, I_{i}$ and I_{j} are coprime.
6. If $I_{1}, I_{2}, \ldots, I_{k}$ are pairwise coprime, show that the product I of the ideals $I_{1}, I_{2}, \ldots, I_{k}$ is equal to the intersection, that is

$$
\prod_{i=1}^{k} I_{i}=\bigcap_{i=1}^{k} I_{i} .
$$

(Hint. Proceed by induction on k).
Let R_{i} denote the quotient R / I_{i}. Define a map,

$$
\phi: R \longrightarrow \bigoplus_{i=1}^{k} R_{i},
$$

by $\phi(a)=\left(a+I_{1}, a+I_{2}, \ldots, a+I_{k}\right)$
7. (a) Show that ϕ is a ring homomorphism.
(b) See below.
(c) Show that ϕ is injective if and only if I, the intersection of the ideals $I_{1}, I_{2}, \ldots, I_{k}$, is equal to the zero ideal.
8. Deduce the Chinese Remainder Theorem, which states that if $I_{1}, I_{2}, \ldots, I_{k}$ are pairwise coprime and the product I is the zero ideal, then R is
isomorphic to $\oplus_{i=1}^{k} R_{i}$. Show how to deduce the other versions of the Chinese Remainder Theorem, which are stated as exercises in the book.

Challenge Problems: (Just for fun)
7 (b) Show that ϕ is surjective if and only if the ideals $I_{1}, I_{2}, \ldots, I_{k}$ are pairwise coprime.
9. (i) Let K be field and let R be the ring of all formal sums $a+b \epsilon$, where a and $b \in K$. Define an addition and a multiplication on R by the rules

$$
(a+b \epsilon)+(c+d \epsilon)=(a+b)+(c+d) \epsilon \quad \text { and } \quad a c+(a d+b c) \epsilon
$$

so that, in particular, $\epsilon^{2}=0$.
Show that with this rule of addition and multiplication, R becomes a ring.
(ii) Show that R is isomorphic to

$$
\frac{K[x]}{\left\langle x^{2}\right\rangle} .
$$

10. Let $p \in \mathbb{N}$ be a prime.
(i) Show that if we may find natural numbers a and b such that $p=$ $a^{2}+b^{2}$ then p is not congruent to 3 modulo 4 (Hint: consider the possibilities for a^{2} modulo 4).
(ii) Show that 2 is a sum of two squares.
(iii) Suppose that p is congruent to 1 modulo 4 . Consider the set

$$
S=\left\{(x, y, z) \in \mathbb{N}^{3} \mid x^{2}+4 y z=p\right\} .
$$

Show that S has two involutions, the easy one

$$
(x, y, z) \longrightarrow(x, z, y)
$$

and the less obvious one

$$
(x, y, z) \longrightarrow \begin{cases}(x+2 z, z, y-x-z) & \text { if } x<y-z \\ (2 y-x, y, x-y+z) & \text { if } y-z<x<2 y \\ (x-2 y, x-y+z, y) & \text { if } 2 y<x\end{cases}
$$

(iv) Show that the less obvious one has exactly one fixed point. Conclude that we may find a and b such that $p=a^{2}+b^{2}$.
11. Let $p \in \mathbb{N}$ be a prime. Show that p is a prime element of the Gaussian integers if and only if p is congruent to 3 modulo 4 .

