HOMEWORK 2, DUE THURSDAY JANUARY 25TH

1. Chapter 4, Section 3: 3, 4, 5, 6, 9, 12, 14, 15, 18, 19, 20, 22, 23, 24.

Challenge Problems: (Just for fun)
2. Chapter 4, Section 3: 26, 27.
3. Let \mathbb{F}_{2} be the field with two elements and let

$$
G=\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)
$$

be the group of all 3×3 invertible matrices with entries in \mathbb{F}_{2}.
(i) Show that G acts on the three dimensional vector space

$$
\mathbb{F}_{2}^{3}=\mathbb{F}_{2} \oplus \mathbb{F}_{2} \oplus \mathbb{F}_{2}
$$

the set of vectors (a, b, c) with entries in $a, b, c \mathbb{F}_{2}$.
(ii) Show that the vector space minus the origin

$$
\mathbb{F}_{2}^{3} \backslash\{(0,0,0)\}
$$

coincides

$$
\mathbb{P}_{\mathbb{F}_{2}}^{2}
$$

which is the set of lines (through the origin) in

$$
\mathbb{F}_{2}^{3}
$$

(iii) Show that

$$
\mathbb{P}_{\mathbb{F}_{2}}^{2}
$$

has seven elements.
(iv) Show that G has 168 elements.
(v) Show that G is a simple group.
(vi) We say that l is a projective line in

$$
\mathbb{P}_{\mathbb{F}_{2}}^{2}
$$

if it is the set of lines in \mathbb{F}_{2}^{3} contained in a plane (a two dimensional linear subspace of \mathbb{F}_{2}^{3}).
Show that there are seven projective lines.
(vii) Show that

$$
\mathbb{P}_{\mathbb{F}_{2}}^{2}
$$

is a projective plane, in the sense that two distinct points determine a unique line and two distinct lines determine a unique point.

