HOMEWORK 2, DUE THURSDAY JANUARY 25TH

1. Chapter 4, Section 3: 3, 4, 5, 6, 9, 12, 14, 15, 18, 19, 20, 22, 23, 24.

Challenge Problems: (Just for fun)

2. Chapter 4, Section 3: 26, 27.

3. Let \mathbb{F}_2 be the field with two elements and let

 $G = \mathrm{GL}_3(\mathbb{F}_2)$

be the group of all 3×3 invertible matrices with entries in \mathbb{F}_2 . (i) Show that G acts on the three dimensional vector space

$$\mathbb{F}_2^3 = \mathbb{F}_2 \oplus \mathbb{F}_2 \oplus \mathbb{F}_2$$

the set of vectors (a, b, c) with entries in $a, b, c\mathbb{F}_2$. (ii) Show that the vector space minus the origin

 $\mathbb{F}_{2}^{3} \setminus \{(0,0,0)\}.$

coincides

 $\mathbb{P}^2_{\mathbb{F}_2}$ which is the set of lines (through the origin) in

 \mathbb{F}_2^3 .

(iii) Show that

$\mathbb{P}^2_{\mathbb{F}_2}$

has seven elements.

(iv) Show that G has 168 elements.

(v) Show that G is a simple group.

(vi) We say that l is a projective line in

$\mathbb{P}^2_{\mathbb{F}_2}$

if it is the set of lines in \mathbb{F}_2^3 contained in a plane (a two dimensional linear subspace of \mathbb{F}_2^3).

Show that there are seven projective lines.

(vii) Show that

$\mathbb{P}^2_{\mathbb{F}_2}$

is a projective plane, in the sense that two distinct points determine a unique line and two distinct lines determine a unique point.