## $\begin{array}{c} \text{FINAL EXAM} \\ \text{MATH 100B, UCSD, WINTER 24} \end{array}$

You have three hours.

| There are 9 problems, and the total number of points is 135. Show all your work. Please make your work as clear and easy to follow as possible. |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Name:                                                                                                                                           |
| Signature:                                                                                                                                      |
| Student ID #:                                                                                                                                   |
| Section instructor:                                                                                                                             |
| Section Time:                                                                                                                                   |

| Problem | Points | Score |
|---------|--------|-------|
| 1       | 25     |       |
| 2       | 10     |       |
| 3       | 15     |       |
| 4       | 20     |       |
| 5       | 10     |       |
| 6       | 15     |       |
| 7       | 20     |       |
| 8       | 10     |       |
| 9       | 10     |       |
| 10      | 25     |       |
| 11      | 10     |       |
| 12      | 10     |       |
| 13      | 10     |       |
| 14      | 10     |       |
| 15      | 10     |       |
| Total   | 135    |       |

1. (25pts) (i) Give the definition of an integral domain.

A ring is an integral domain if it is commutative and whenever ab=0 then either a=0 or b=0.

(ii) Give the definition of a ring homomorphism.

A ring homomorphism is a function  $\phi: R \longrightarrow S$  such that

$$\phi(1)=1 \qquad \phi(a+b)=\phi(a)+\phi(b) \qquad \text{and} \qquad \phi(ab)=\phi(a)\phi(b).$$
 for all  $a$  and  $b\in R$ .

(iii) Give the definition of associate elements of a ring.

a and  $b \in R$  are associates if a divides b and b divides a.

(iv) Give the definition of the content of a polynomial.

If  $f(x) \in R[x]$  is a polynomial over a UFD R then the content of f is the gcd of its coefficients.

(v) Give the definition of a Euclidean domain.

A integral domain R is a Euclidean domain if there is a function

$$d \colon R - \{0\} \longrightarrow \mathbb{N} \cup \{0\},$$

which satisfies, for every pair of non-zero elements a and b of R,

(1)

$$d(a) \le d(ab)$$
.

(2) There are elements q and r of R such that

$$b = aq + r,$$

where either r = 0 or d(r) < d(a).

2. (10pts) (i) Prove that the kernel of a ring homomorphism  $\phi: R \longrightarrow S$  is an ideal, not equal to R.

Let  $I = \text{Ker } \phi$ . Then  $0 \in I$  as  $\phi(0) = 0$ ; in particular I is non-empty. If a and  $b \in I$  then  $\phi(a) = 0$  and  $\phi(b) = 0$ . Therefore  $\phi(a+b) = \phi(a) + \phi(b) = 0 + 0 = 0$ . Thus  $a+b \in I$  and so I is closed under addition. If  $a \in I$  and  $r \in R$  then  $\phi(ra) = \phi(r)\phi(a) = \phi(r)0 = 0$ . Thus  $ra \in I$  and so I is an ideal.  $\phi(1) = 1 \neq 0$  so that  $1 \notin I$  and  $I \neq R$ .

(ii) Let  $I \subset R$  be an ideal of a ring R such that  $I \neq R$ . Show that there is a (natural) well-defined multiplication on the set of left cosets R/I.

Suppose that x and y are two left cosets. Then x = a + I and y = b + I and we try to define xy = ab + I. To check that this makes sense, suppose that x = a' + I and y = b' + I. Then we may find i and  $j \in J$  such that a' = a + i and b' = b + j. It follows that

$$a'b' = (a+i)(b+j)$$
$$= ab + aj + ib + ij$$
$$= ab + k.$$

Note that  $aj \in I$  as  $j \in I$ ,  $ib \in I$  as  $i \in I$  and  $ij \in I$  as i and  $j \in I$ . Thus  $k \in I$  so that a'b' + I = ab + I and the multiplication is well-defined.

3. (15pts) (i) Let R be a commutative ring and let a be an element of R. Prove that the set

$$\{ ra \mid r \in R \}$$

is an ideal of R.

Call this set I. I is non-empty as  $0 = 0 \cdot a \in I$ . If x and y are in I, then x = ra and y = sa some r and s. In this case  $x + y = ra + sa = (r + s)a \in I$ . Similarly if  $x \in I$  and  $s \in R$ , then x = ra, some r and  $sx = s(ra) = (rs)a \in I$ . Thus I is non-empty and closed under addition and scalar multiplication. It follows that I is an ideal.

(ii) Show that a commutative ring R is a field if and only if the only ideals in R are the zero-ideal  $\{0\}$  and the whole ring R.

Suppose that R is a field and let I be a non-zero ideal of R. Pick  $a \in I$ , not equal to zero. As R is a field, a is a unit. Let b be the inverse of a. Then  $1 = ba \in I$ . Now pick  $r \in R$ . Then  $r = r \cdot 1 \in I$ . Thus I = R. Now suppose that R has no non-trivial ideals. Pick a non-zero element  $a \in R$ . It suffices to find an inverse of a. Let I be the ideal generated by a. Then I has the form above.  $a = 1 \cdot a \in I$ . Thus I is not the zero ideal. By assumption I = R and so  $1 \in I$ . But then 1 = ba, some  $b \in R$  and b is the inverse of a. Thus R is field.

(iii) Let  $\phi \colon F \longrightarrow R$  be a ring homomorphism, where F is a field. Prove that  $\phi$  is injective.

Let K be the kernel. As  $\phi(1) = 1$ ,  $1 \notin K$ . As K is an ideal, and F is field, it follows that K is the zero ideal. But then  $\phi$  is injective.

4. (20pts) (i) Let R be a commutative ring and let I be an ideal. Show that R/I is an integral domain if and only if I is a prime ideal.

Let a and b be two elements of R and suppose that  $ab \in I$ , whilst  $a \notin I$ . Let x = a + I and y = b + I. Then  $x \neq I = 0$ .

$$xy = (a+I)(b+I)$$
$$= ab + I$$
$$= I = 0.$$

As R/I is an integral domain and  $x \neq 0$ , it follows that b+I=y=0. But then  $b \in I$ . Hence I is prime.

Now suppose that I is prime. Let x and y be two elements of R/I, such that xy=0, whilst  $x\neq 0$ . Then x=a+I and y=b+I, for some a and b in R. As xy=I, it follows that  $ab\in I$ . As  $x\neq I$ ,  $a\notin I$ . As I is a prime ideal, it follows that  $b\in I$ . But then y=b+I=0. Thus R/I is an integral domain.

(ii) Let R be an integral domain and let I be an ideal. Show that R/I is a field if and only if I is a maximal ideal.

Note that there a surjective ring homomorphism

$$\phi \colon R \longrightarrow R/I$$

which sends an element  $r \in R$  to the left coset r+I. Furthermore there is a correspondence between ideals J of R/I and ideals K of R which contain I. Indeed, given an ideal J of R/I, let K be the inverse image of J. As  $0 \in J$ ,  $I \subset K$ . Given  $I \subset K$ , let  $J = \phi(I)$ . It is easy to check that the given maps are inverses of each other. The zero ideal corresponds to I and R/I corresponds to R. Thus I is maximal if and only if R/I only contains the zero ideal and R/I.

On the other hand R/I is a field if and only if the only ideals in R/I are the zero ideal and the whole of R/I.

## 5. (10pts) Show that every Euclidean domain is a PID.

Let I be an ideal in a Euclidean domain. We want to show that I is a principal ideal. If I is the zero ideal then  $I=\langle 0 \rangle$ . Otherwise, pick  $a \neq 0$  an element of I, such that d(a) is minimal. I claim that  $I=\langle a \rangle$ . Suppose not. Clearly  $\langle a \rangle \subset I$ , so that there must be an element  $b \in I$  such that  $b \notin \langle a \rangle$ .

We may write

$$b = qa + r,$$

where d(r) < d(a) and by assumption  $r \neq 0$ . But  $r = b - qa \in I$ , and d(r) < d(a), which contradicts our choice of a.

6. (15pts) Find all irreducible polynomials of degree at most four over the field  $\mathbb{F}_2$ .

Any linear polynomial is irreducible. There are two such x and x+1. A general quadratic has the form  $f(x)=x^2+ax+b$ .  $b\neq 0$ , else x divides f(x). Thus b=1. If a=0, then  $f(x)=x^2+1$ , which has 1 as a zero. Thus  $f(x)=x^2+x+1$  is the only irreducible quadratic.

Now suppose that we have an irreducible cubic  $f(x) = x^3 + ax + bx + 1$ . This is irreducible if and only if  $f(1) \neq 0$ , which is the same as to say that there are an odd number of terms. Thus the irreducible cubics are  $f(x) = x^3 + x^2 + 1$  and  $x^3 + x + 1$ .

Finally suppose that f(x) is a quartic polynomial. The general irreducible is of the form  $x^4 + ax^3 + bx^2 + cx + 1$ .  $f(1) \neq 0$  is the same as to say that either two of a, b and c are equal to zero or they are all equal to one. Suppose that

$$f(x) = g(x)h(x).$$

If f(x) does not have a root, then both g and h must have degree two. If either g or h were reducible, then again f would have a linear factor, and therefore a root. Thus the only possibilty is that both g and h are the unique irreducible quadratic polynomials.

In this case

$$f(x) = (x^2 + x + 1)^2 = x^4 + x^2 + 1.$$

Thus  $x^4 + x^3 + x^2 + x + 1$ ,  $x^4 + x^3 + 1$ , and  $x^4 + x + 1$  are the three irreducible quartics.

7. (20pts) (i) Let R be a UFD and let g(x) and  $h(x) \in R[x]$  be two polynomials whose content is one. Show that the content of the product  $f(x) = g(x)h(x) \in R[x]$  is also equal to one.

Suppose not. As R is a UFD, it follows that there is a prime p that divides the content of f(x). We may write

$$g(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$
 and  $h(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_0$ .

As the content of g is one, at least one coefficient of g is not divisible by p. Let i be the first such, so that p divides  $a_k$ , for k < i whilst p does not divide  $a_i$ . Similarly pick j so that p divides  $b_k$ , for k < j, whilst p does not divide  $b_j$ .

Consider the coefficient of  $x^{i+j}$  in f. This is equal to

$$a_0b_{i+j} + a_1b_{i+j-1} + \cdots + a_{i-1}b_{j+1} + a_ib_j + a_{i+1}b_{j+1} + \dots + a_{i+j}b_0.$$

Note that p divides every term of this sum, except the middle one  $a_ib_j$ . Thus p does not divide the coefficient of  $x^{i+j}$ . But this contradicts the definition of the content.

(ii) Prove that if R is a UFD then so is the polynomial ring  $R[x_1, x_2, \dots, x_n]$ .

By Gauss's Lemma, if S is a UFD, then so is S[x]. We proceed by induction on n. The case n=1 is Gauss' Lemma. So suppose that the result is true for n-1. Set

$$S = R[x_1, x_2, \dots, x_{n-1}].$$

Then S is a UFD, by induction on n. By Gauss' Lemma  $S[x_n]$  is a UFD. But it is easy to see that

$$R[x_1, x_2, \dots, x_n] \simeq S[x_n],$$

and the result follows by induction.

8. (10pts) (i) State Eisenstein's criteria. Prove that the polynomial f(x)

 $5x^{13} - 21x^{12} + 35x^{11} + 42x^{10} - 56x^9 + 14x^8 + 21x^7 - 7x^6 - 42x^5 + 14x^4 + 21x^3 - 7x^2 + 28x + 7x^6 + 14x^4 + 12x^3 - 12x^2 + 12x^3 - 12x^2 + 12x^3 - 12x^2 + 12x^3 - 12x^2 + 12x^3 - 12x^3$ 

Let  $f(x) \in \mathbb{Z}[x]$  be a polynomial. Suppose that there is a prime p which does not divide the leading coefficient of f, whilst it does divide the other coefficients, and such that  $p^2$  does not divide the constant coefficient. Then f is irreducible over  $\mathbb{Q}$ .

We apply Eisenstein with p = 7. 7 does not divide the leading coefficient, it does divide the other coefficients and  $7^2$  does not divide the constant coefficient. Thus the f(x) is an irreducible element of  $\mathbb{Q}[x]$ .

9. (10pts) Let p be a prime. Prove that

$$f(x) = x^{p-1} + x^{p-2} + \dots + x + 1,$$

is irreducible over  $\mathbb{Q}$ .

By Gauss' Lemma, it suffices to prove that f(x) is irreducible over  $\mathbb{Z}$ . First note that

$$f(x) = \frac{x^p - 1}{x - 1},$$

as can be easily checked. Consider the change of variable

$$y = x + 1$$
.

As this induces an automorphism

$$\mathbb{Z}[x] \longrightarrow \mathbb{Z}[x]$$

by sending x to x+1, this will not alter whether or not f is irreducible. In this case

$$f(y) = \frac{(y+1)^p - 1}{y}$$

$$= y^{p-1} + \binom{p}{1} y^{p-2} + \binom{p}{2} y^{p-3} + \dots + \binom{p}{p-1}$$

$$= y^{p-1} + py^{p-2} + \dots + p.$$

Note that  $\binom{p}{i}$  is divisible by p, for all  $1 \leq i < p$ , and the constant coefficient is not divisible buy  $p^2$ , so that we can apply Eisenstein to f(y), using the prime p.

## Bonus Challenge Problems

10. (25pts) (i) Give the definition of a module.

A module M is an abelian group, together with a commutative ring R, with a scalar multiplication

$$R \times M \longrightarrow M$$

such that for all m and  $n \in M$  and  $r, s \in R$ ,

- (1)  $1 \cdot m = m$ .
- (2) (rs)m = r(sm).
- (3) (r+s)m = rm + sm.
- (4) r(m+n) = rm + rn.
- (ii) Give the definition of an R-linear map.

An R-linear map is a function  $\phi \colon M \longrightarrow N$  between two R-modules such that

$$\phi(m+n) = \phi(m) + \phi(n)$$
 and  $\phi(rm) = r\phi(m)$ 

for all m and  $n \in M$  and  $r \in R$ .

(iii) Give the definition of a finitely generated module.

M is finitely generated if there is a finite set X such that

$$M = \langle X \rangle$$
.

(iv) Give the definition of a bilinear map.

If M, N and P are three R-modules over a ring R a function

$$f: M \times N \longrightarrow P$$

is called bilinear if it is linear in either factor, so that

$$f(m_1 + m_2, n) = f(m_1, n) + f(m_2, n)$$
  $f(rm, n) = rf(m, n)$ 

$$f(m, n_1 + n_2) = f(m, n_1) + f(m, n_2)$$
  $f(m, r_1) = rf(m, r_2)$ 

(v) Give the definition of the tensor product of two modules.

Let M and N be two R-modules. The tensor product of M and N is an R-module  $M \otimes N$ , together with a bilinear map  $u \colon M \times N \longrightarrow M \otimes N$  such that u is universal in the following sense Given any other bilinear map  $f \colon M \times N \longrightarrow P$  there is a unique induced R-linear map  $\phi \colon M \otimes N \longrightarrow P$  such that the following diagram commutes



11. (10pts) Prove that a module over a Noetherian ring is Noetherian if and only if it is finitely generated.

I claim that if

$$0 \longrightarrow M \longrightarrow N \longrightarrow P \longrightarrow 0$$

is a short exact sequence of modules then N is Noetherian if and only if M and P are Noetherian. One way around is clear. If N is Noetherian, then M is automatically Noetherian as it is a submodule of N. If P' is submodule of P, then N' the inverse image of P' is a submodule of N. Then a finite set of generators of N' pushes forward to generators of P'.

Now suppose that M and P are Noetherian. Suppose that we have an ascending chain of submodules of N. By taking their images in P and their inverse images in M, we get two ascending chains of submodules, one inside M and the other inside P. By assumption both must stabilise. But then it is easy to see that the original sequence in N must also stabilise. Hence the claim.

By the claim, the short exact sequence

$$0 \longrightarrow R^{n-1} \longrightarrow R^n \longrightarrow R \longrightarrow 0,$$

and induction on n, it follows that  $R^n$  is Noetherian. Picking generators for M, it follows that M is a quotient of  $R^n$ , a Noetherian module. But then M is Noetherian.

Let R be a Noetherian ring and let  $I \subset R[x]$  be an ideal. It suffices to prove that I is finitely generated. Let  $J \subset R$  be the set of leading coefficients of elements of I. It is easy to check that J is an ideal of R. As R is Noetherian, J is finitely generated. Suppose that  $J = \langle a_1, a_2, \ldots, a_k \rangle$ . Pick  $f_i \in I$  with leading coefficient  $a_i$  and let m be the maximum of the degrees  $d_i$  of  $f_i$ .

Pick  $f \in I$ . I claim that there is an element  $g \in \langle f_1, f_2, \dots, f_k \rangle$  such that f - g has degree at most m. The proof proceeds by induction on the degree d of f. If this is less than m there is nothing to prove. Otherwise it suffices, by induction on the degree, to decrease the degree by one. Suppose the leading coefficient of f is a. As  $a \in J$ , there are  $r_1, r_2, \dots, r_k \in R$  such that

$$a = \sum r_i a_i.$$

But the coefficient of  $x^n$  in

$$f(x) - g(x) = f(x) - \sum_{i} r_i x^{d-d_i} f_i(x)$$

is zero by construction.

Let  $h(x) = f(x) - g(x) \in I$ . Then h has degree less than m. Let M be the R-module consisting of all polynomials of degree less than m. Then  $h \in I \cap M$  and M is generated by  $1, x, x^2, \ldots, x^{m-1}$ . In particular M is finitely generated. As R is Noetherian, M is Noetherian. As  $I \cap M$  is a submodule of M, it follows that  $I \cap M$  is finitely generated. Pick generators  $h_1, h_2, \ldots, h_l$ . Then h is a linear combination of  $h_1, h_2, \ldots, h_l$  and so f is a linear combination of  $f_1, f_2, \ldots, f_k$  and  $h_1, h_2, \ldots, h_l$ . It follows that these are generators of I.

13. (10pts) Let m and n be integers. Identify  $\mathbb{Z}_m \otimes \mathbb{Z}_n$ .

Let d be the gcd of m and n. I claim that

$$\mathbb{Z}_m \underset{\mathbb{Z}}{\otimes} \mathbb{Z}_n \simeq \mathbb{Z}_d.$$

The proof proceeds in two steps. First observe that

$$m(1 \otimes 1) = m \otimes 1$$
$$= 0 \otimes 1$$
$$= 0.$$

Similarly  $n(1 \otimes 1) = 0$ . As  $\mathbb{Z}$  is a PID, we may find r and s such that

$$d = rm + sn$$
.

Thus

$$d(1 \otimes 1) = (rm + sn)1 \otimes 1$$
$$= r(m(1 \otimes 1) + s(n(1 \otimes 1))$$
$$= 0.$$

Thus  $\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n$  is surely isomorphic to a subgroup of  $\mathbb{Z}_d$ . It remains to check that no smaller multiple of  $1 \otimes 1$  is zero. The best way to prove this is to use the universal property. Let

$$f: \mathbb{Z}_m \times \mathbb{Z}_n \longrightarrow \mathbb{Z}_d$$

be the map that sends (a, b) to ab. As d divides both m and n, this map is indeed well-defined. On the other hand it is clearly bilinear. By the universal property, it induces an R-linear map

$$\phi \colon \mathbb{Z}_m \underset{\mathbb{Z}}{\otimes} \mathbb{Z}_n \longrightarrow \mathbb{Z}_d.$$

This map sends  $1 \otimes 1$  to f(1,1), that is, 1. Hence if  $k(1 \otimes 1) = 0$ , then k is zero in  $\mathbb{Z}_d$  and so d divides k. The result follows.

14. (10pts) Let A be a complex square matrix with characteristic polynomial  $(x-1)^3(x+2)^5$  and minimal polynomial  $(x-1)^2(x+2)^3$ . What are all of the possible Jordan canonical forms (aka Jordan normal forms) for A?

A is an  $8 \times 8$  matrix, as the characteristic polynomial has degree 8. The entries on the main diagonal are the zeroes of the characteristic polynomial. Thus there are 3 ones and 5 minus twos.

As the minimal polynomial has  $(x-1)^2$  as a factor it follows that there is a  $2 \times 2$  (and no larger) Jordan block with 1 on the main diagonal. As the minimal polynomial has  $(x+2)^3$  as a factor it follows that there is a  $3 \times 3$  (and no larger) Jordan block with -2 on the main diagonal. Consider the Jordan blocks with eigenvalue -2. There is one of size  $3 \times 3$ . Otherwise there is one  $2 \times 2$  Jordan block, or two  $1 \times 1$  Jordan blocks.

Now consider the Jordan blocks with eigenvalue 1. There is one of size  $2 \times 2$ . The only possibility is that there is one more of size  $1 \times 1$ . There are thus two possibilities, the first, one  $3 \times 3$  and one  $2 \times 2$  Jordan block with eigenvalue -2, the second, one  $3 \times 3$  and two  $1 \times 1$  Jordan block with eigenvalue -2:

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 \end{pmatrix}$$

15. (10pts) Describe all conjugacy classes

$$GL_3(\mathbb{F}_2)$$
.

For each conjugacy class give the order and the minimal polynomial of an element.

The characteristic polynomial is a monic cubic polynomial and zero is not a root:

$$(x+1)^3 = x^3 + x^2 + x + 1$$
  $x^3 + x^2 + 1$  and  $x^3 + x + 1$ 

Recall that the last two polynomials are irreducible.

The minimal polynomial divides the characteristic polynomial and has the same roots.

Thus the minimal polynomial is x + 1,  $(x + 1)^2$ , or  $(x + 1)^3$ , with characteristic polynomial  $(x + 1)^3$  or  $x^3 + x^2 + 1$  or  $x^3 + x + 1$ , with the same characteristic polynomial.

The first possibility corresponds to the identity matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

This corresponds to three copies of the companion matrix of x+1. The order is 1. If we have the second possibility then we have one copy of the companion matrix of x+1 and one copy of the companion matrix of  $x^2+1$ ,

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

The order is 2. If we have the third possibility then we have the companion matrix of  $x^3 + x^2 + x + 1$ 

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

The order is 4. If we have the fourth or fifth possibility then we have the companion matrix of  $x^3 + x^2 + 1$  and  $x^3 + x + 1$ 

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \qquad \text{and} \qquad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

The order is 7 in both cases.