FINAL EXAM MATH 100B, UCSD, WINTER 24

You have three hours.

There are 9 problems, and the total number of points is 135 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad
Student ID \#: \qquad
Section instructor: \qquad
Section Time: \qquad

Problem	Points	Score
1	25	
2	10	
3	15	
4	20	
5	10	
6	15	
7	20	
8	10	
9	10	
10	25	
11	10	
12	10	
13	10	
14	10	
15	10	
Total	135	

1. (25pts) (i) Give the definition of an integral domain.

A ring is an integral domain if it is commutative and whenever $a b=0$ then either $a=0$ or $b=0$.
(ii) Give the definition of a ring homomorphism.

A ring homomorphism is a function $\phi: R \longrightarrow S$ such that $\phi(1)=1 \quad \phi(a+b)=\phi(a)+\phi(b) \quad$ and $\quad \phi(a b)=\phi(a) \phi(b)$.
for all a and $b \in R$.
(iii) Give the definition of associate elements of a ring.
a and $b \in R$ are associates if a divides b and b divides a.
(iv) Give the definition of the content of a polynomial.

If $f(x) \in R[x]$ is a polynomial over a UFD R then the content of f is the gcd of its coefficients.
(v) Give the definition of a Euclidean domain.

A integral domain R is a Euclidean domain if there is a function

$$
d: R-\{0\} \longrightarrow \mathbb{N} \cup\{0\},
$$

which satisfies, for every pair of non-zero elements a and b of R,

$$
\begin{equation*}
d(a) \leq d(a b) \tag{1}
\end{equation*}
$$

(2) There are elements q and r of R such that

$$
b=a q+r,
$$

where either $r=0$ or $d(r)<d(a)$.
2. (10pts) (i) Prove that the kernel of a ring homomorphism $\phi: R \longrightarrow S$ is an ideal, not equal to R.

Let $I=\operatorname{Ker} \phi$. Then $0 \in I$ as $\phi(0)=0$; in particular I is non-empty. If a and $b \in I$ then $\phi(a)=0$ and $\phi(b)=0$. Therefore $\phi(a+b)=$ $\phi(a)+\phi(b)=0+0=0$. Thus $a+b \in I$ and so I is closed under addition. If $a \in I$ and $r \in R$ then $\phi(r a)=\phi(r) \phi(a)=\phi(r) 0=0$. Thus $r a \in I$ and so I is an ideal. $\phi(1)=1 \neq 0$ so that $1 \notin I$ and $I \neq R$.
(ii) Let $I \subset R$ be an ideal of a ring R such that $I \neq R$. Show that there is a (natural) well-defined multiplication on the set of left cosets R / I.

Suppose that x and y are two left cosets. Then $x=a+I$ and $y=b+I$ and we try to define $x y=a b+I$. To check that this makes sense, suppose that $x=a^{\prime}+I$ and $y=b^{\prime}+I$. Then we may find i and $j \in J$ such that $a^{\prime}=a+i$ and $b^{\prime}=b+j$. It follows that

$$
\begin{aligned}
a^{\prime} b^{\prime} & =(a+i)(b+j) \\
& =a b+a j+i b+i j \\
& =a b+k .
\end{aligned}
$$

Note that $a j \in I$ as $j \in I, i b \in I$ as $i \in I$ and $i j \in I$ as i and $j \in I$. Thus $k \in I$ so that $a^{\prime} b^{\prime}+I=a b+I$ and the multiplication is well-defined.
3. (15pts) (i) Let R be a commutative ring and let a be an element of R. Prove that the set

$$
\{r a \mid r \in R\}
$$

is an ideal of R.

Call this set $I . I$ is non-empty as $0=0 \cdot a \in I$. If x and y are in I, then $x=r a$ and $y=s a$ some r and s. In this case $x+y=r a+s a=$ $(r+s) a \in I$. Similarly if $x \in I$ and $s \in R$, then $x=r a$, some r and $s x=s(r a)=(r s) a \in I$. Thus I is non-empty and closed under addition and scalar multiplication. It follows that I is an ideal.
(ii) Show that a commutative ring R is a field if and only if the only ideals in R are the zero-ideal $\{0\}$ and the whole ring R.

Suppose that R is a field and let I be a non-zero ideal of R. Pick $a \in I$, not equal to zero. As R is a field, a is a unit. Let b be the inverse of a. Then $1=b a \in I$. Now pick $r \in R$. Then $r=r \cdot 1 \in I$. Thus $I=R$.
Now suppose that R has no non-trivial ideals. Pick a non-zero element $a \in R$. It suffices to find an inverse of a. Let I be the ideal generated by a. Then I has the form above. $a=1 \cdot a \in I$. Thus I is not the zero ideal. By assumption $I=R$ and so $1 \in I$. But then $1=b a$, some $b \in R$ and b is the inverse of a. Thus R is field.
(iii) Let $\phi: F \longrightarrow R$ be a ring homomorphism, where F is a field. Prove that ϕ is injective.

Let K be the kernel. As $\phi(1)=1,1 \notin K$. As K is an ideal, and F is field, it follows that K is the zero ideal. But then ϕ is injective.
4. (20pts) (i) Let R be a commutative ring and let I be an ideal. Show that R / I is an integral domain if and only if I is a prime ideal.

Let a and b be two elements of R and suppose that $a b \in I$, whilst $a \notin I$. Let $x=a+I$ and $y=b+I$. Then $x \neq I=0$.

$$
\begin{aligned}
x y & =(a+I)(b+I) \\
& =a b+I \\
& =I=0 .
\end{aligned}
$$

As R / I is an integral domain and $x \neq 0$, it follows that $b+I=y=0$. But then $b \in I$. Hence I is prime.
Now suppose that I is prime. Let x and y be two elements of R / I, such that $x y=0$, whilst $x \neq 0$. Then $x=a+I$ and $y=b+I$, for some a and b in R. As $x y=I$, it follows that $a b \in I$. As $x \neq I, a \notin I$. As I is a prime ideal, it follows that $b \in I$. But then $y=b+I=0$. Thus R / I is an integral domain.
(ii) Let R be an integral domain and let I be an ideal. Show that R / I is a field if and only if I is a maximal ideal.

Note that there a surjective ring homomorphism

$$
\phi: R \longrightarrow R / I
$$

which sends an element $r \in R$ to the left coset $r+I$. Furthermore there is a correspondence between ideals J of R / I and ideals K of R which contain I. Indeed, given an ideal J of R / I, let K be the inverse image of J. As $0 \in J, I \subset K$. Given $I \subset K$, let $J=\phi(I)$. It is easy to check that the given maps are inverses of each other. The zero ideal corresponds to I and R / I corresponds to R. Thus I is maximal if and only if R / I only contains the zero ideal and R / I.
On the other hand R / I is a field if and only if the only ideals in R / I are the zero ideal and the whole of R / I.
5. (10pts) Show that every Euclidean domain is a PID.

Let I be an ideal in a Euclidean domain. We want to show that I is a principal ideal. If I is the zero ideal then $I=\langle 0\rangle$. Otherwise, pick $a \neq 0$ an element of I, such that $d(a)$ is minimal. I claim that $I=\langle a\rangle$. Suppose not. Clearly $\langle a\rangle \subset I$, so that there must be an element $b \in I$ such that $b \notin\langle a\rangle$.
We may write

$$
b=q a+r
$$

where $d(r)<d(a)$ and by assumption $r \neq 0$. But $r=b-q a \in I$, and $d(r)<d(a)$, which contradicts our choice of a.
6. (15pts) Find all irreducible polynomials of degree at most four over the field \mathbb{F}_{2}.

Any linear polynomial is irreducible. There are two such x and $x+1$. A general quadratic has the form $f(x)=x^{2}+a x+b . \quad b \neq 0$, else x divides $f(x)$. Thus $b=1$. If $a=0$, then $f(x)=x^{2}+1$, which has 1 as a zero. Thus $f(x)=x^{2}+x+1$ is the only irreducible quadratic.
Now suppose that we have an irreducible cubic $f(x)=x^{3}+a x+b x+1$. This is irreducible if and only if $f(1) \neq 0$, which is the same as to say that there are an odd number of terms. Thus the irreducible cubics are $f(x)=x^{3}+x^{2}+1$ and $x^{3}+x+1$.
Finally suppose that $f(x)$ is a quartic polynomial. The general irreducible is of the form $x^{4}+a x^{3}+b x^{2}+c x+1 . f(1) \neq 0$ is the same as to say that either two of a, b and c are equal to zero or they are all equal to one. Suppose that

$$
f(x)=g(x) h(x) .
$$

If $f(x)$ does not have a root, then both g and h must have degree two. If either g or h were reducible, then again f would have a linear factor, and therefore a root. Thus the only possibilty is that both g and h are the unique irreducible quadratic polynomials.
In this case

$$
f(x)=\left(x^{2}+x+1\right)^{2}=x^{4}+x^{2}+1 .
$$

Thus $x^{4}+x^{3}+x^{2}+x+1, x^{4}+x^{3}+1$, and $x^{4}+x+1$ are the three irreducible quartics.
7. (20pts) (i) Let R be a UFD and let $g(x)$ and $h(x) \in R[x]$ be two polynomials whose content is one. Show that the content of the product $f(x)=g(x) h(x) \in R[x]$ is also equal to one.

Suppose not. As R is a UFD, it follows that there is a prime p that divides the content of $f(x)$. We may write
$g(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \quad$ and $\quad h(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}$.
As the content of g is one, at least one coefficient of g is not divisible by p. Let i be the first such, so that p divides a_{k}, for $k<i$ whilst p does not divide a_{i}. Similarly pick j so that p divides b_{k}, for $k<j$, whilst p does not d divide b_{j}.
Consider the coefficient of x^{i+j} in f. This is equal to

$$
a_{0} b_{i+j}+a_{1} b_{i+j-1}+\cdots+a_{i-1} b_{j+1}+a_{i} b_{j}+a_{i+1} b_{j+1}+\ldots a_{i+j} b_{0}
$$

Note that p divides every term of this sum, except the middle one $a_{i} b_{j}$. Thus p does not divide the coefficient of x^{i+j}. But this contradicts the definition of the content.
(ii) Prove that if R is a UFD then so is the polynomial ring $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

By Gauss's Lemma, if S is a UFD, then so is $S[x]$. We proceed by induction on n. The case $n=1$ is Gauss' Lemma. So suppose that the result is true for $n-1$. Set

$$
S=R\left[x_{1}, x_{2}, \ldots, x_{n-1}\right] .
$$

Then S is a UFD, by induction on n. By Gauss' Lemma $S\left[x_{n}\right]$ is a UFD. But it is easy to see that

$$
R\left[x_{1}, x_{2}, \ldots, x_{n}\right] \simeq S\left[x_{n}\right]
$$

and the result follows by induction.
8. (10pts) (i) State Eisenstein's criteria. Prove that the polynomial $f(x)$
$5 x^{13}-21 x^{12}+35 x^{11}+42 x^{10}-56 x^{9}+14 x^{8}+21 x^{7}-7 x^{6}-42 x^{5}+14 x^{4}+21 x^{3}-7 x^{2}+28 x+7$ is an irreducible element of $\mathbb{Q}[x]$.

Let $f(x) \in \mathbb{Z}[x]$ be a polynomial. Suppose that there is a prime p which does not divide the leading coefficient of f, whilst it does divide the other coefficients, and such that p^{2} does not divide the constant coefficient. Then f is irreducible over \mathbb{Q}.
We apply Eisenstein with $p=7.7$ does not divide the leading coefficient, it does divide the other coefficients and 7^{2} does not divide the constant coefficient. Thus the $f(x)$ is an irreducible element of $\mathbb{Q}[x]$.
9. (10pts) Let p be a prime. Prove that

$$
f(x)=x^{p-1}+x^{p-2}+\cdots+x+1,
$$

is irreducible over \mathbb{Q}.

By Gauss' Lemma, it suffices to prove that $f(x)$ is irreducible over \mathbb{Z}. First note that

$$
f(x)=\frac{x^{p}-1}{x-1}
$$

as can be easily checked. Consider the change of variable

$$
y=x+1 .
$$

As this induces an automorphism

$$
\mathbb{Z}[x] \longrightarrow \mathbb{Z}[x]
$$

by sending x to $x+1$, this will not alter whether or not f is irreducible. In this case

$$
\begin{aligned}
f(y) & =\frac{(y+1)^{p}-1}{y} \\
& =y^{p-1}+\binom{p}{1} y^{p-2}+\binom{p}{2} y^{p-3}+\cdots+\binom{p}{p-1} \\
& =y^{p-1}+p y^{p-2}+\cdots+p .
\end{aligned}
$$

Note that $\binom{p}{i}$ is divisible by p, for all $1 \leq i<p$, and the constant coefficient is not divisible buy p^{2}, so that we can apply Eisenstein to $f(y)$, using the prime p.

Bonus Challenge Problems

10. (25pts) (i) Give the definition of a module.

A module M is an abelian group, together with a commutative ring R, with a scalar multiplication

$$
R \times M \longrightarrow M
$$

such that for all m and $n \in M$ and $r, s \in R$,
(1) $1 \cdot m=m$.
(2) $(r s) m=r(s m)$.
(3) $(r+s) m=r m+s m$.
(4) $r(m+n)=r m+r n$.
(ii) Give the definition of an R-linear map.

An R-linear map is a function $\phi: M \longrightarrow N$ between two R-modules such that

$$
\phi(m+n)=\phi(m)+\phi(n) \quad \text { and } \quad \phi(r m)=r \phi(m)
$$

for all m and $n \in M$ and $r \in R$.
(iii) Give the definition of a finitely generated module.
M is finitely generated if there is a finite set X such that

$$
M=\langle X\rangle .
$$

(iv) Give the definition of a bilinear map.

If M, N and P are three R-modules over a ring R a function

$$
f: M \times N \longrightarrow P
$$

is called bilinear if it is linear in either factor, so that

$$
\begin{aligned}
& f\left(m_{1}+m_{2}, n\right)=f\left(m_{1}, n\right)+f\left(m_{2}, n\right) \quad f(r m, n)=r f(m, n) \\
& f\left(m, n_{1}+n_{2}\right)=f\left(m, n_{1}\right)+f\left(m, n_{2}\right) \quad f(m, r n)=r f(m, n) .
\end{aligned}
$$

(v) Give the definition of the tensor product of two modules.

Let M and N be two R-modules. The tensor product of M and N is an R-module $M \underset{R}{\otimes} N$, together with a bilinear map $u: M \times N \longrightarrow$ $M \underset{R}{\otimes} N$ such that u is universal in the following sense Given any other bilinear map $f: M \times N \longrightarrow P$ there is a unique induced R-linear map $\phi: M \underset{R}{\otimes} N \longrightarrow P$ such that the following diagram commutes

11. (10pts) Prove that a module over a Noetherian ring is Noetherian if and only if it is finitely generated.

I claim that if

$$
0 \longrightarrow M \longrightarrow N \longrightarrow P \longrightarrow 0
$$

is a short exact sequence of modules then N is Noetherian if and only if M and P are Noetherian. One way around is clear. If N is Noetherian, then M is automatically Noetherian as it is a submodulde of N. If P^{\prime} is submodule of P, then N^{\prime} the inverse image of P^{\prime} is a submodule of N. Then a finite set of generators of N^{\prime} pushes forward to generators of P^{\prime}.
Now suppose that M and P are Noetherian. Suppose that we have an ascending chain of submodules of N. By taking their images in P and their inverse images in M, we get two ascending chains of submodules, one inside M and the other inside P. By assumption both must stabilise. But then it is easy to see that the original sequence in N must also stabilise. Hence the claim.
By the claim, the short exact sequence

$$
0 \longrightarrow R^{n-1} \longrightarrow R^{n} \longrightarrow R \longrightarrow 0
$$

and induction on n, it follows that R^{n} is Noetherian. Picking generators for M, it follows that M is a quotient of R^{n}, a Noetherian module. But then M is Noetherian.
12. (10pts) Prove Hilbert's Basis Theorem.

Let R be a Noetherian ring and let $I \subset R[x]$ be an ideal. It suffices to prove that I is finitely generated. Let $J \subset R$ be the set of leading coefficients of elements of I. It is easy to check that J is an ideal of R. As R is Noetherian, J is finitely generated. Suppose that $J=$ $\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle$. Pick $f_{i} \in I$ with leading coefficient a_{i} and let m be the maximum of the degrees d_{i} of f_{i}.
Pick $f \in I$. I claim that there is an element $g \in\left\langle f_{1}, f_{2}, \ldots, f_{k}\right\rangle$ such that $f-g$ has degree at most m. The proof proceeds by induction on the degree d of f. If this is less than m there is nothing to prove. Otherwise it suffices, by induction on the degree, to decrease the degree by one. Suppose the leading coefficient of f is a. As $a \in J$, there are $r_{1}, r_{2}, \ldots, r_{k} \in R$ such that

$$
a=\sum r_{i} a_{i} .
$$

But the coefficient of x^{n} in

$$
f(x)-g(x)=f(x)-\sum r_{i} x^{d-d_{i}} f_{i}(x)
$$

is zero by construction.
Let $h(x)=f(x)-g(x) \in I$. Then h has degree less than m. Let M be the R-module consisting of all polynomials of degree less than m. Then $h \in I \cap M$ and M is generated by $1, x, x^{2}, \ldots, x^{m-1}$. In particular M is finitely generated. As R is Noetherian, M is Noetherian. As $I \cap M$ is a submodule of M, it follows that $I \cap M$ is finitely generated. Pick generators $h_{1}, h_{2}, \ldots, h_{l}$. Then h is a linear combination of $h_{1}, h_{2}, \ldots, h_{l}$ and so f is a linear combination of $f_{1}, f_{2}, \ldots, f_{k}$ and $h_{1}, h_{2}, \ldots, h_{l}$. It follows that these are generators of I.
13. (10pts) Let m and n be integers. Identify $\mathbb{Z}_{m} \underset{\mathbb{Z}}{\otimes} \mathbb{Z}_{n}$.

Let d be the gcd of m and n. I claim that

$$
\mathbb{Z}_{m} \mathbb{Z}_{\mathbb{Z}}^{\mathbb{Z}_{n} \simeq \mathbb{Z}_{d} .}
$$

The proof proceeds in two steps. First observe that

$$
\begin{aligned}
m(1 \otimes 1) & =m \otimes 1 \\
& =0 \otimes 1 \\
& =0 .
\end{aligned}
$$

Similarly $n(1 \otimes 1)=0$. As \mathbb{Z} is a PID, we may find r and s such that

$$
d=r m+s n .
$$

Thus

$$
\begin{aligned}
d(1 \otimes 1) & =(r m+s n) 1 \otimes 1 \\
& =r(m(1 \otimes 1)+s(n(1 \otimes 1)) \\
& =0
\end{aligned}
$$

Thus $\mathbb{Z}_{m} \mathbb{Z}_{\mathbb{Z}} \mathbb{Z}_{n}$ is surely isomorphic to a subgroup of \mathbb{Z}_{d}. It remains to check that no smaller multiple of $1 \otimes 1$ is zero. The best way to prove this is to use the universal property. Let

$$
f: \mathbb{Z}_{m} \times \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{d}
$$

be the map that sends (a, b) to $a b$. As d divides both m and n, this map is indeed well-defined. On the other hand it is clearly bilinear. By the universal property, it induces an R-linear map

$$
\phi: \mathbb{Z}_{m} \underset{\mathbb{Z}}{\otimes} \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{d} .
$$

This map sends $1 \otimes 1$ to $f(1,1)$, that is, 1 . Hence if $k(1 \otimes 1)=0$, then k is zero in \mathbb{Z}_{d} and so d divides k. The result follows.
14. (10pts) Let A be a complex square matrix with characteristic polynomial $(x-1)^{3}(x+2)^{5}$ and minimal polynomial $(x-1)^{2}(x+2)^{3}$. What are all of the possible Jordan canonical forms (aka Jordan normal forms) for A ?
A is an 8×8 matrix, as the characteristic polynomial has degree 8 . The entries on the main diagonal are the zeroes of the characteristic polynomial. Thus there are 3 ones and 5 minus twos.
As the minimal polynomial has $(x-1)^{2}$ as a factor it follows that there is a 2×2 (and no larger) Jordan block with 1 on the main diagonal. As the minimal polynomial has $(x+2)^{3}$ as a factor it follows that there is a 3×3 (and no larger) Jordan block with -2 on the main diagonal. Consider the Jordan blocks with eigenvalue -2 . There is one of size 3×3. Otherwise there is one 2×2 Jordan block, or two 1×1 Jordan blocks.
Now consider the Jordan blocks with eigenvalue 1. There is one of size 2×2. The only possibility is that there is one more of size 1×1. There are thus two possibilities, the first, one 3×3 and one 2×2 Jordan block with eigenvalue -2 , the second, one 3×3 and two 1×1 Jordan block with eigenvalue -2 :

$$
\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -2
\end{array}\right)\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -2
\end{array}\right)
$$

15. (10pts) Describe all conjugacy classes

$$
\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)
$$

For each conjugacy class give the order and the minimal polynomial of an element.

The characteristic polynomial is a monic cubic polynomial and zero is not a root:

$$
(x+1)^{3}=x^{3}+x^{2}+x+1 \quad x^{3}+x^{2}+1 \quad \text { and } \quad x^{3}+x+1
$$

Recall that the last two polynomials are irreducible.
The minimal polynomial divides the characteristic polynomial and has the same roots.
Thus the minimal polynomial is $x+1,(x+1)^{2}$, or $(x+1)^{3}$, with characteristic polynomial $(x+1)^{3}$ or $x^{3}+x^{2}+1$ or $x^{3}+x+1$, with the same characteristic polynomial.
The first possibility corresponds to the identity matrix

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

This corresponds to three copies of the companion matrix of $x+1$. The order is 1 . If we have the second possibility then we have one copy of the companion matrix of $x+1$ and one copy of the companion matrix of $x^{2}+1$,

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

The order is 2 . If we have the third possibility then we have the companion matrix of $x^{3}+x^{2}+x+1$

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right) .
$$

The order is 4 . If we have the fourth or fifth possibility then we have the companion matrix of $x^{3}+x^{2}+1$ and $x^{3}+x+1$

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) .
$$

The order is 7 in both cases.

