
FINAL EXAM

MATH 100B, UCSD, WINTER 24

You have three hours.

There are 9 problems, and the total number of

points is 135. Show all your work. Please make

your work as clear and easy to follow as possible.

Name:

Signature:

Student ID #:

Section instructor:

Section Time:

Problem Points Score

1 25

2 10

3 15

4 20

5 10

6 15

7 20

8 10

9 10

10 25

11 10

12 10

13 10

14 10

15 10

Total 135
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1. (25pts) (i) Give the definition of an integral domain.

A ring is an integral domain if it is commutative and whenever ab = 0
then either a = 0 or b = 0.

(ii) Give the definition of a ring homomorphism.

A ring homomorphism is a function φ : R −→ S such that

φ(1) = 1 φ(a+ b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b).

for all a and b ∈ R.

(iii) Give the definition of associate elements of a ring.

a and b ∈ R are associates if a divides b and b divides a.
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(iv) Give the definition of the content of a polynomial.

If f(x) ∈ R[x] is a polynomial over a UFD R then the content of f is
the gcd of its coefficients.

(v) Give the definition of a Euclidean domain.

A integral domain R is a Euclidean domain if there is a function

d : R− {0} −→ N ∪ {0},

which satisfies, for every pair of non-zero elements a and b of R,

(1)
d(a) ≤ d(ab).

(2) There are elements q and r of R such that

b = aq + r,

where either r = 0 or d(r) < d(a).
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2. (10pts) (i) Prove that the kernel of a ring homomorphism φ : R −→ S
is an ideal, not equal to R.

Let I = Kerφ. Then 0 ∈ I as φ(0) = 0; in particular I is non-empty.
If a and b ∈ I then φ(a) = 0 and φ(b) = 0. Therefore φ(a + b) =
φ(a) + φ(b) = 0 + 0 = 0. Thus a + b ∈ I and so I is closed under
addition. If a ∈ I and r ∈ R then φ(ra) = φ(r)φ(a) = φ(r)0 = 0. Thus
ra ∈ I and so I is an ideal.
φ(1) = 1 6= 0 so that 1 /∈ I and I 6= R.

(ii) Let I ⊂ R be an ideal of a ring R such that I 6= R. Show that there
is a (natural) well-defined multiplication on the set of left cosets R/I.

Suppose that x and y are two left cosets. Then x = a+ I and y = b+ I
and we try to define xy = ab + I. To check that this makes sense,
suppose that x = a′ + I and y = b′ + I. Then we may find i and j ∈ J
such that a′ = a+ i and b′ = b+ j. It follows that

a′b′ = (a+ i)(b+ j)

= ab+ aj + ib+ ij

= ab+ k.

Note that aj ∈ I as j ∈ I, ib ∈ I as i ∈ I and ij ∈ I as i and
j ∈ I. Thus k ∈ I so that a′b′ + I = ab + I and the multiplication is
well-defined.
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3. (15pts) (i) Let R be a commutative ring and let a be an element of
R. Prove that the set

{ ra | r ∈ R }

is an ideal of R.

Call this set I. I is non-empty as 0 = 0 · a ∈ I. If x and y are in I,
then x = ra and y = sa some r and s. In this case x+ y = ra+ sa =
(r + s)a ∈ I. Similarly if x ∈ I and s ∈ R, then x = ra, some r
and sx = s(ra) = (rs)a ∈ I. Thus I is non-empty and closed under
addition and scalar multiplication. It follows that I is an ideal.

(ii) Show that a commutative ring R is a field if and only if the only
ideals in R are the zero-ideal {0} and the whole ring R.

Suppose that R is a field and let I be a non-zero ideal of R. Pick a ∈ I,
not equal to zero. As R is a field, a is a unit. Let b be the inverse of a.
Then 1 = ba ∈ I. Now pick r ∈ R. Then r = r · 1 ∈ I. Thus I = R.
Now suppose that R has no non-trivial ideals. Pick a non-zero element
a ∈ R. It suffices to find an inverse of a. Let I be the ideal generated
by a. Then I has the form above. a = 1 · a ∈ I. Thus I is not the
zero ideal. By assumption I = R and so 1 ∈ I. But then 1 = ba, some
b ∈ R and b is the inverse of a. Thus R is field.

(iii) Let φ : F −→ R be a ring homomorphism, where F is a field. Prove
that φ is injective.

Let K be the kernel. As φ(1) = 1, 1 /∈ K. As K is an ideal, and F is
field, it follows that K is the zero ideal. But then φ is injective.
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4. (20pts) (i) Let R be a commutative ring and let I be an ideal. Show
that R/I is an integral domain if and only if I is a prime ideal.

Let a and b be two elements of R and suppose that ab ∈ I, whilst a /∈ I.
Let x = a+ I and y = b+ I. Then x 6= I = 0.

xy = (a+ I)(b+ I)

= ab+ I

= I = 0.

As R/I is an integral domain and x 6= 0, it follows that b+ I = y = 0.
But then b ∈ I. Hence I is prime.
Now suppose that I is prime. Let x and y be two elements of R/I,
such that xy = 0, whilst x 6= 0. Then x = a + I and y = b + I, for
some a and b in R. As xy = I, it follows that ab ∈ I. As x 6= I, a /∈ I.
As I is a prime ideal, it follows that b ∈ I. But then y = b + I = 0.
Thus R/I is an integral domain.

(ii) Let R be an integral domain and let I be an ideal. Show that R/I
is a field if and only if I is a maximal ideal.

Note that there a surjective ring homomorphism

φ : R −→ R/I

which sends an element r ∈ R to the left coset r + I. Furthermore
there is a correspondence between ideals J of R/I and ideals K of R
which contain I. Indeed, given an ideal J of R/I, let K be the inverse
image of J . As 0 ∈ J , I ⊂ K. Given I ⊂ K, let J = φ(I). It is easy
to check that the given maps are inverses of each other. The zero ideal
corresponds to I and R/I corresponds to R. Thus I is maximal if and
only if R/I only contains the zero ideal and R/I.
On the other hand R/I is a field if and only if the only ideals in R/I
are the zero ideal and the whole of R/I.

5



5. (10pts) Show that every Euclidean domain is a PID.

Let I be an ideal in a Euclidean domain. We want to show that I is
a principal ideal. If I is the zero ideal then I = 〈0〉. Otherwise, pick
a 6= 0 an element of I, such that d(a) is minimal. I claim that I = 〈a〉.
Suppose not. Clearly 〈a〉 ⊂ I, so that there must be an element b ∈ I
such that b /∈ 〈a〉.
We may write

b = qa+ r,

where d(r) < d(a) and by assumption r 6= 0. But r = b− qa ∈ I, and
d(r) < d(a), which contradicts our choice of a.
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6. (15pts) Find all irreducible polynomials of degree at most four over
the field F2.

Any linear polynomial is irreducible. There are two such x and x+ 1.
A general quadratic has the form f(x) = x2 + ax + b. b 6= 0, else x
divides f(x). Thus b = 1. If a = 0, then f(x) = x2 + 1, which has 1 as
a zero. Thus f(x) = x2 + x+ 1 is the only irreducible quadratic.
Now suppose that we have an irreducible cubic f(x) = x3+ax+bx+1.
This is irreducible if and only if f(1) 6= 0, which is the same as to say
that there are an odd number of terms. Thus the irreducible cubics are
f(x) = x3 + x2 + 1 and x3 + x+ 1.
Finally suppose that f(x) is a quartic polynomial. The general irre-
ducible is of the form x4 + ax3 + bx2 + cx + 1. f(1) 6= 0 is the same
as to say that either two of a, b and c are equal to zero or they are all
equal to one. Suppose that

f(x) = g(x)h(x).

If f(x) does not have a root, then both g and h must have degree two.
If either g or h were reducible, then again f would have a linear factor,
and therefore a root. Thus the only possibilty is that both g and h are
the unique irreducible quadratic polynomials.
In this case

f(x) = (x2 + x+ 1)2 = x4 + x2 + 1.

Thus x4 + x3 + x2 + x + 1, x4 + x3 + 1, and x4 + x + 1 are the three
irreducible quartics.
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7. (20pts) (i) Let R be a UFD and let g(x) and h(x) ∈ R[x] be two
polynomials whose content is one. Show that the content of the product
f(x) = g(x)h(x) ∈ R[x] is also equal to one.

Suppose not. As R is a UFD, it follows that there is a prime p that
divides the content of f(x). We may write

g(x) = anx
n+an−1x

n−1+· · ·+a0 and h(x) = bnx
n+bn−1x

n−1+· · ·+b0.

As the content of g is one, at least one coefficient of g is not divisible
by p. Let i be the first such, so that p divides ak, for k < i whilst p
does not divide ai. Similarly pick j so that p divides bk, for k < j,
whilst p does not d divide bj.
Consider the coefficient of xi+j in f . This is equal to

a0bi+j + a1bi+j−1 + · · ·+ ai−1bj+1 + aibj + ai+1bj+1 + . . . ai+jb0.

Note that p divides every term of this sum, except the middle one aibj.
Thus p does not divide the coefficient of xi+j. But this contradicts the
definition of the content.

8



(ii) Prove that if R is a UFD then so is the polynomial ring R[x1, x2, . . . , xn].

By Gauss’s Lemma, if S is a UFD, then so is S[x]. We proceed by
induction on n. The case n = 1 is Gauss’ Lemma. So suppose that the
result is true for n− 1. Set

S = R[x1, x2, . . . , xn−1].

Then S is a UFD, by induction on n. By Gauss’ Lemma S[xn] is a
UFD. But it is easy to see that

R[x1, x2, . . . , xn] ' S[xn],

and the result follows by induction.
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8. (10pts) (i) State Eisenstein’s criteria. Prove that the polynomial
f(x)

5x13−21x12+35x11+42x10−56x9+14x8+21x7−7x6−42x5+14x4+21x3−7x2+28x+7

is an irreducible element of Q[x].

Let f(x) ∈ Z[x] be a polynomial. Suppose that there is a prime p
which does not divide the leading coefficient of f , whilst it does divide
the other coefficients, and such that p2 does not divide the constant
coefficient. Then f is irreducible over Q.
We apply Eisenstein with p = 7. 7 does not divide the leading coef-
ficient, it does divide the other coefficients and 72 does not divide the
constant coefficient. Thus thef(x) is an irreducible element of Q[x].

10



9. (10pts) Let p be a prime. Prove that

f(x) = xp−1 + xp−2 + · · ·+ x+ 1,

is irreducible over Q.

By Gauss’ Lemma, it suffices to prove that f(x) is irreducible over Z.
First note that

f(x) =
xp − 1

x− 1
,

as can be easily checked. Consider the change of variable

y = x+ 1.

As this induces an automorphism

Z[x] −→ Z[x]

by sending x to x+1, this will not alter whether or not f is irreducible.
In this case

f(y) =
(y + 1)p − 1

y

= yp−1 +

(

p

1

)

yp−2 +

(

p

2

)

yp−3 + · · ·+

(

p

p− 1

)

= yp−1 + pyp−2 + · · ·+ p.

Note that
(

p

i

)

is divisible by p, for all 1 ≤ i < p, and the constant
coefficient is not divisible buy p2, so that we can apply Eisenstein to
f(y), using the prime p.
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Bonus Challenge Problems

10. (25pts) (i) Give the definition of a module.

A module M is an abelian group, together with a commutative ring R,
with a scalar multiplication

R×M −→ M

such that for all m and n ∈ M and r, s ∈ R,

(1) 1 ·m = m.
(2) (rs)m = r(sm).
(3) (r + s)m = rm+ sm.
(4) r(m+ n) = rm+ rn.

(ii) Give the definition of an R-linear map.

An R-linear map is a function φ : M −→ N between two R-modules
such that

φ(m+ n) = φ(m) + φ(n) and φ(rm) = rφ(m)

for all m and n ∈ M and r ∈ R.

(iii) Give the definition of a finitely generated module.

M is finitely generated if there is a finite set X such that

M = 〈X〉.
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(iv) Give the definition of a bilinear map.

If M , N and P are three R-modules over a ring R a function

f : M ×N −→ P

is called bilinear if it is linear in either factor, so that

f(m1 +m2, n) = f(m1, n) + f(m2, n) f(rm, n) = rf(m,n)

f(m,n1 + n2) = f(m,n1) + f(m,n2) f(m, rn) = rf(m,n).

(v) Give the definition of the tensor product of two modules.

Let M and N be two R-modules. The tensor product of M and N
is an R-module M ⊗

R
N , together with a bilinear map u : M × N −→

M ⊗
R
N such that u is universal in the following sense Given any other

bilinear map f : M ×N −→ P there is a unique induced R-linear map
φ : M ⊗

R
N −→ P such that the following diagram commutes

M ×N
f
- P

M ⊗
R
N

u

?

φ
-
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11. (10pts) Prove that a module over a Noetherian ring is Noetherian
if and only if it is finitely generated.

I claim that if
0 −→ M −→ N −→ P −→ 0

is a short exact sequence of modules then N is Noetherian if and only if
M and P are Noetherian. One way around is clear. If N is Noetherian,
then M is automatically Noetherian as it is a submodulde of N . If P ′

is submodule of P , then N ′ the inverse image of P ′ is a submodule of
N . Then a finite set of generators of N ′ pushes forward to generators
of P ′.
Now suppose that M and P are Noetherian. Suppose that we have an
ascending chain of submodules of N . By taking their images in P and
their inverse images in M , we get two ascending chains of submodules,
one inside M and the other inside P . By assumption both must sta-
bilise. But then it is easy to see that the original sequence in N must
also stabilise. Hence the claim.
By the claim, the short exact sequence

0 −→ Rn−1 −→ Rn −→ R −→ 0,

and induction on n, it follows that Rn is Noetherian. Picking generators
for M , it follows that M is a quotient of Rn, a Noetherian module. But
then M is Noetherian.
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12. (10pts) Prove Hilbert’s Basis Theorem.

Let R be a Noetherian ring and let I ⊂ R[x] be an ideal. It suffices
to prove that I is finitely generated. Let J ⊂ R be the set of leading
coefficients of elements of I. It is easy to check that J is an ideal of
R. As R is Noetherian, J is finitely generated. Suppose that J =
〈a1, a2, . . . , ak〉. Pick fi ∈ I with leading coefficient ai and let m be the
maximum of the degrees di of fi.
Pick f ∈ I. I claim that there is an element g ∈ 〈f1, f2, . . . , fk〉 such
that f − g has degree at most m. The proof proceeds by induction
on the degree d of f . If this is less than m there is nothing to prove.
Otherwise it suffices, by induction on the degree, to decrease the degree
by one. Suppose the leading coefficient of f is a. As a ∈ J , there are
r1, r2, . . . , rk ∈ R such that

a =
∑

riai.

But the coefficient of xn in

f(x)− g(x) = f(x)−
∑

rix
d−difi(x)

is zero by construction.
Let h(x) = f(x)− g(x) ∈ I. Then h has degree less than m. Let M be
the R-module consisting of all polynomials of degree less than m. Then
h ∈ I ∩M and M is generated by 1, x, x2, . . . , xm−1. In particular M
is finitely generated. As R is Noetherian, M is Noetherian. As I ∩M
is a submodule of M , it follows that I ∩M is finitely generated. Pick
generators h1, h2, . . . , hl. Then h is a linear combination of h1, h2, . . . , hl

and so f is a linear combination of f1, f2, . . . , fk and h1, h2, . . . , hl. It
follows that these are generators of I.
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13. (10pts) Let m and n be integers. Identify Zm ⊗
Z
Zn.

Let d be the gcd of m and n. I claim that

Zm ⊗
Z
Zn ' Zd.

The proof proceeds in two steps. First observe that

m(1⊗ 1) = m⊗ 1

= 0⊗ 1

= 0.

Similarly n(1⊗ 1) = 0. As Z is a PID, we may find r and s such that

d = rm+ sn.

Thus

d(1⊗ 1) = (rm+ sn)1⊗ 1

= r(m(1⊗ 1) + s(n(1⊗ 1))

= 0.

Thus Zm ⊗
Z
Zn is surely isomorphic to a subgroup of Zd. It remains to

check that no smaller multiple of 1⊗ 1 is zero. The best way to prove
this is to use the universal property. Let

f : Zm × Zn −→ Zd

be the map that sends (a, b) to ab. As d divides both m and n, this
map is indeed well-defined. On the other hand it is clearly bilinear. By
the universal property, it induces an R-linear map

φ : Zm ⊗
Z
Zn −→ Zd.

This map sends 1⊗ 1 to f(1, 1), that is, 1. Hence if k(1⊗ 1) = 0, then
k is zero in Zd and so d divides k. The result follows.
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14. (10pts) Let A be a complex square matrix with characteristic polyno-
mial (x−1)3(x+2)5 and minimal polynomial (x−1)2(x+2)3. What are
all of the possible Jordan canonical forms (aka Jordan normal forms)
for A?

A is an 8 × 8 matrix, as the characteristic polynomial has degree 8.
The entries on the main diagonal are the zeroes of the characteristic
polynomial. Thus there are 3 ones and 5 minus twos.
As the minimal polynomial has (x−1)2 as a factor it follows that there
is a 2 × 2 (and no larger) Jordan block with 1 on the main diagonal.
As the minimal polynomial has (x+2)3 as a factor it follows that there
is a 3× 3 (and no larger) Jordan block with −2 on the main diagonal.
Consider the Jordan blocks with eigenvalue −2. There is one of size
3× 3. Otherwise there is one 2× 2 Jordan block, or two 1× 1 Jordan
blocks.
Now consider the Jordan blocks with eigenvalue 1. There is one of size
2×2. The only possibility is that there is one more of size 1×1. There
are thus two possibilities, the first, one 3×3 and one 2×2 Jordan block
with eigenvalue −2, the second, one 3× 3 and two 1× 1 Jordan block
with eigenvalue −2:






















1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −2 1 0 0 0
0 0 0 0 −2 1 0 0
0 0 0 0 0 −2 0 0
0 0 0 0 0 0 −2 1
0 0 0 0 0 0 0 −2













































1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −2 1 0 0 0
0 0 0 0 −2 1 0 0
0 0 0 0 0 −2 0 0
0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 −2






















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15. (10pts) Describe all conjugacy classes

GL3(F2).

For each conjugacy class give the order and the minimal polynomial of
an element.

The characteristic polynomial is a monic cubic polynomial and zero is
not a root:

(x+ 1)3 = x3 + x2 + x+ 1 x3 + x2 + 1 and x3 + x+ 1

Recall that the last two polynomials are irreducible.
The minimal polynomial divides the characteristic polynomial and has
the same roots.
Thus the minimal polynomial is x + 1, (x + 1)2, or (x + 1)3, with
characteristic polynomial (x+1)3 or x3+x2+1 or x3+x+1, with the
same characteristic polynomial.
The first possibility corresponds to the identity matrix





1 0 0
0 1 0
0 0 1



 .

This corresponds to three copies of the companion matrix of x+1. The
order is 1. If we have the second possibility then we have one copy of
the companion matrix of x+ 1 and one copy of the companion matrix
of x2 + 1,





1 0 0
0 0 1
0 1 0



 .

The order is 2. If we have the third possibility then we have the com-
panion matrix of x3 + x2 + x+ 1





0 1 0
0 0 1
1 1 1



 .

The order is 4. If we have the fourth or fifth possibility then we have
the companion matrix of x3 + x2 + 1 and x3 + x+ 1





0 1 0
0 0 1
1 0 1



 and





0 1 0
0 0 1
1 1 0



 .

The order is 7 in both cases.
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