
MODEL ANSWERS TO THE NINTH HOMEWORK

1. For Chapter 2, Section 11: 1. Conjugacy in Sn is determined by
cycle type. There are three conjugacy classes,

C1 = {e} C2 = {(2, 3), (1, 3), (1, 2)} and C3 = {(1, 2, 3), (1, 3, 2)}.
Everything commutes with the identity

Ce = S3,

and the index of S3 is one, the cardinality of C1.
Consider (1, 2) ∈ C2. This only commutes with the identity and itself,
so that

C(1,2) = {e, (1, 2)}.
The index is 3 which is the cardinality of C2.
Consider (1, 2, 3) ∈ C2. This only commutes with all of its powers

C(1,2,3) = {e, (1, 2, 3), (1, 3, 2)}.
The index is 2 which is the cardinality of C3.
There is only conjugacy class with one element. It follows that the
centre is trivial and so the class equation reads

6 = |S3| = |Z|+ |C2|+ |C3| = 1 + 3 + 2.

2. There are five conjugacy classes,

C1 = {I}, C2 = {R,R3}, C3 = {R2}, C4 = {F1, F2} and C5 = {D1, D2}.
Everything commutes with the identity

CI = D4,

and the index of D4 is one, the cardinality of C1. Everything also
commutes with R2,

CR2 = D4,

and the index of D4 is one, the cardinality of C3.
Consider R ∈ C2. This only commutes with all of its powers

CR = {I, R,R2, R3}.
The index is 2 which is the cardinality of C2.
Now consider F1 ∈ C4. This commutes with

CF1 = {I, R2, F1, F2}.
The index is 2 which is the cardinality of C4.
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Finally consider D1 ∈ C5. This commutes with

CD1 = {I, R2, D1, D2}.

The index is 2 which is the cardinality of C5.
There are two conjugacy classes with one element. It follows that the
centre

Z = {I, R2}
has two elements. In this case the class equation reads

8 = |D4| = |Z|+ |C2|+ |C4|+ C5| = 2 + 2 + 2 + 2.

3. Follows from (4).
4. Done in class.
5. There are two ways to prove this.
Recall that Z is normal in G. As the quotient G/Z has order 1 or p,
the quotient is cyclic. But then G is abelian.
Aliter : Note that if c ∈ G then Z ⊂ C(c), the centraliser.
As Z has index at most p there are two cases, Z = C(c) or C(c) = G.
Suppose that Z = C(c). In this case c ∈ Z so that c commutes with
everything.
Suppose that C(c) = G. In this case c commutes with everything.
Either way, an arbitrary element c of G commutes with everything and
G is abelian.
10. Conjugation by x defines an inner automorphism of G,

φ : G −→ G given by φ(g) = xgx−1.

We want to show

N(φ(H)) = φ(N(H))).

Suppose that y belongs to the RHS. We show that it belongs to the
LHS.
By assumption y = φ(n), where n ∈ N(H). Suppose that k ∈ φ(H).
Then we may find h ∈ H such that k = φ(h). We have

yky−1 = φ(n)φ(h)φ(n−1)

= φ(nhn−1).

Now l = nhn−1 ∈ H as h ∈ H and n ∈ N(H). Thus φ(l) ∈ φ(H) and
so y ∈ N(φ(H)) as k is arbitrary.
It follows that

N(φ(H)) ⊃ φ(N(H))).

We have shown that

N(ψ(K)) ⊃ ψ(N(K)))
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for any subgroup K and any inner automorphism ψ. Let ψ be the
inverse of φ and let K = φ(H). Then

N(H) ⊃ ψ(N(φ(H))) as H = ψ(K).

Applying φ to both sides gives

N(φ(H)) ⊂ φ(N(H)).

Thus the LHS is contained in the RHS.
16. 36 = 22 · 32. Thus there is a Sylow 3-subgroup H of order 9. Let
S be the set of left cosests. Define an action of G on S as follows

G× S −→ S given by g · (aH) = (ga)H.

This gives rise to a homomorphism

φ : G −→ A(S).

What can we say about the kernel N of φ? If g is in the kernel then
φ(g) fixes H, that is, it stabilises H. Thus gH = g · H = H and so
g ∈ H. Thus

Kerφ = N ⊂ H.

H has index 4 and so S has four elements. Thus A(S) ' S4 has 24
elements. The image G′ of G is a subgroup of A(S). 9 does not divide
24 and so 9 does not divide G′ by Lagrange. Thus the kernel must be
non-trivial.
The kernel is a subgroup of H and so N is a normal subgroup of order
3 or 9.
17. 108 = 22 · 33. Thus there is a Sylow 3-subgroup H of order 27. As
before this gives us a group homomorphism

φ : G −→ S4.

Let N be the kernel. Then N is a normal subgroup of G and φ(G) is
isomorphic to G/N . As 27 divides G but 9 does not divide 24 = 4!
it follows that the order of N is divisible by 9. Thus N is a normal
subgroup of order 9 or 27.
2. (i) True.
Let φ : G −→ G be an automorphism of G. We have to show that
φ(K) ⊂ K.
As H is characteristically normal in G it follows that φ(H) ⊂ H. Define
a function

ψ : H −→ H by the rule ψ(h) = φ(h) ∈ H.

It is easy to see that ψ is a group homomorphism, as φ is a group
homomorphism.
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By assumption φ has an inverse ρ. ρ(H) ⊂ H and so we may define a
function

σ : H −→ H by the rule σ(h) = ρ(h) ∈ H.
By what we already observed, σ is a group homomorphism and σ is
clearly the inverse of ψ.
Thus ψ is an automorphism of H. As K is characteristically normal in
H it follows that

φ(K) = ψ(K)

⊂ K.

Thus K is characteristically normal in G.
(ii) False. Let

G = A4, H = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} and K = {e, (1, 2)(3, 4)}.
Then the elements of H consist of the identity and all of the elements
of order 2. It follows that H is characteristically normal in A4. K has
index two in H and so K is normal in H.
However K is not normal in G. Let σ = (1, 2)(3, 4) ∈ K and let
τ = (1, 2, 3). Then

τστ−1 = (2, 3)(1, 4) /∈ K.
(iii) True. Let g ∈ G. As observed in (i) we get an automorphism of
H by the rule

φ : H −→ H given by h −→ ghg−1

As K is characteristically normal in H we have

gKg−1 = φ(K)

⊂ K.

Therefore K is normal in G.
(iv) False. If H is characteristically normal in G then it is certainly
normal. Thus (ii) provides a counterexample.
3. Suppose that G = 〈a〉 is cyclic and let φ be an automorphism of
G. Then φ is determined by what it does to a and it must send a to
another generator of G. We have already seen that there is a unique
isomorphism sending the generator of a cyclic generator to a generator.
If G is infinite then the only generators of G are a and a−1. Thus the
automorphism group of G has two elements and Aut(G) ' Z2.
Now suppose that a has order n. ai is a generator of G if and only if i
is coprime to n. This defines a function

f : Aut(G) −→ Un given by f(φ) = i,
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where φ(a) = ai. We check that f is a group homomorphism. Suppose
that α and β are two automorphisms of G and let γ = αβ. Suppose
that β(a) = ai and α(a) = aj. We have

γ(a) = (αβ)(a)

= (α ◦ β)(a)

= α(β(a))

= α(aj)

= α(a)j

= (ai)j

= aij.

Thus

f(γ) = ij

= f(α)f(β),

so that f is an isomorphism.
4. Let G be a group of order n. If n is prime then G is cyclic.
So we may assume that n = 14. If G is abelian then G is isomorphic
to

G ' Z2 × Z7 ' Z14.

Suppose that G is not abelian. The order of an element must be a
divisor of 14, so that the possible orders are 1, 2, 7 or 14. G is not
cyclic, as it is not abelian and so there are no elements of order 14.
There is only one element of order 1, the identity. As G is not abelian,
not every element has order 2.
It follows that there is an element a of order 7. Let H be the group it
generates. Then H has index two in G and so H is normal in G. G/H
is a group of order two. Pick b ∈ G \H. The image of b in G/H has
order 2. Thus the order of b is divisible by 2. Thus the order of b is
two, as it is not 14.
Note that G = 〈a, b〉, as the order of the group generated by a and b is
divisible by both 2 and 7.
At this point we can proceed as in the lecture notes. Here is an alter-
native and more robust way to proceed.
Conjugation by b induces an automorphism of G. It restricts to an
automorphism φ of H, as H is normal

φ : H −→ H given by φ(h) = bhb−1 ∈ H.
As G is not abelian, bab−1 6= a and so φ is non-trivial. Thus φ has
order 2 as b has order 2.
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By question (3),

Aut(H) = U7.

The elements of U7 are the integers from 1 to 6. 22 = 4 and 23 = 8 = 1
mod 7. Thus 2 is an element of order 3. 32 = 9 = 2 mod 7 so that 3
is an element of order 6. It follows that U7 = 〈3〉 is cyclic and there is
unique element of order 2, 33 = 27 = 6 mod 7.
In this case

φ(a) = a6 = a−1 so that bab−1 = a−1.

Thus G ' D7, the Dihedral group of order 14.
Thus there are two groups of order 14, the cyclic group and the Dihedral
group.
Challenge Problems (Just for fun)
5. n = 12 = 22 · 3. If G is abelian then G is isomorphic to either

Z4 × Z3 ' Z12 or Z2 × Z2 × Z3 ' Z2 × Z6.

Suppose that G is not abelian.
TBC ....
6. There are many ways to proceed; the main point is to try to be
reasonably efficient. Suppose that 61 ≤ n ≤ 167. By Sylow’s theorem,
we may assume that n is not of the form mpk, where m < p and p is
prime (note that this includes the case when n is either a power of a
prime or the product of two primes).
This leaves

63, 70, 72, 80, 84, 90, 96, 105, 108, 112, 120, 126, 132, 135, 140, 144, 150, 154, 160, 165.

Suppose that n has the form pαqβ, where p < q. Then the number of
Sylow q-subgroups is equal to

1, p, p2, p3, . . . .

If this is not equal to 1, it must be greater than q > p, so that there
must be at least p2 such subgroups. Suppose that there are p2. Then
q divides p2 − 1 = (p − 1)(p + 1). It follows that q = p + 1, so that
p = 2 and q = 3. Otherwise, the number of such subgroups is at least
p3. If β = 1, this gives at least p3(q − 1) elements of order q. If α = 3,
then there are only p3 elements left and there is then a unique Sylow
p-subgroup.
It follows that if n is not of the form 2α3β, and either α ≤ 2 or β = 1
and α = 3, then G is not simple. Thus we can eliminate all such
numbers. This leaves:

70, 72, 84, 90, 96, 105, 108, 120, 126, 132, 140, 144, 150, 154, 165.
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Now suppose that the largest prime dividing n is eleven. Let x be the
number of Sylow 11-subgroups. Then there are at least 10x elements of
G whose order is a power of 11. Since 10x < 168, we see that x ≤ 16.
But then

x = 1, 12.

Thus assuming that x 6= 1, n is divisible by 12.
Now suppose that the largest prime dividing n is seven. Let x be the
number of Sylow 7-subgroups. Since 6x < 168, we see that x < 28.
But then

x = 1, 8, 15, 22.

Thus assuming that x 6= 1, then either n is divisible by 23 or 3 · 5.
This leaves

72, 80, 90, 96, 105, 108, 112, 120, 132, 144, 150, 160.

We handle the rest using a case by case analysis. Note first that if we
can find a nontrivial group homomorphism

ρ : G −→ Sk,

where either n does not divide k!, or n = k!, then we are done. Indeed
we may assume that the kernel is trivial, in which case ρ is injective, so
that by Lagrange G ' Sk. But then Ak is a proper normal subgroup.
Note that G acts on the Sylow p-subgroups and that G acts on the left
cosets of any subgroup H. So the number of Sylow p-subgroups and
the index of any subgroup is at most 4, at most 5 if n does not divide
120, or n = 120, and at most 6, if n does not divide 720.
Suppose that n = 72 = 23 · 32. Let x be the number of Sylow 3-
subgroups. Then

x = 1, 4, 7, . . .

and x divides 8. But then x ≤ 4 and we are done.
If n = 80 = 24 · 5, then a Sylow 2-subgroup has index 5 and we are
done.
If n = 90 = 2 · 32 · 5, then let x be the number of Sylow 5-subgroups.
Then

x = 1, 6, 11, 16,

and divides 18. Thus we may assume that x = 6, and there are 30
elements of order 5. Now let y be the number of Sylow 3-subgroups.
Then

y = 1, 4, 7, 10,

and divides 10. Thus we may assume that y = 10. Suppose that every
two Sylow 3-subgroups intersect only in the trivial group. Then there
are 10 · 8 = 80 elements which belong to these groups, which is far too
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many. The only possibility is that there are two Sylow 3-subgroups P
and Q such that |P ∩Q| = 3. Let N be the normaliser of H = P ∩Q.
As H is normal in P and Q,

N ⊃ 〈P,Q〉 ⊃ PQ.

Thus N contains at least

|P ||Q|
|H|

= 27,

elements. Thus the index of N is at most three, and we are done.
If n = 96 = 25 · 3, then the number of Sylow 2-subgroups divides 3,
and we are done.
If n = 105 = 3 · 5 · 7, let x be the number of Sylow 7-subgroups. Then

x = 1, 8, 15,

and divides 15. Thus we may assume that x = 15. But then there
are 15 · 6 = 90 elements of order 5. Let y be the number of Sylow
5-subgroups. Then

y = 1, 6, 11, 16, 21,

and divides 21. Thus we may assume that y = 21, so that there are
21 · 4 elements of order five, impossible.
If n = 108 = 22 · 33, then the index of a Sylow 3-subgroup Q is 4 and
we are done.
If n = 120 = 23 · 3 · 5, then let x be the number of Sylow 5-subgroups.
Then

x = 1, 6, 11, 16, 21, . . . ,

and x divides 24. But then x = 6, and there are 24 elements of order
5. Let y be the number of Sylow 3-subgroups. Then

y = 1, 4, 7, 10, . . . ,

and y divides 40. Thus y = 10, and there are 20 elements of order 3.
Let z be the number of Sylow 2-subgroups. Then

z = 1, 3, 5, 7, . . . ,

and z divides 15. Thus we may assume that z = 15. If every pair of
Sylow 2-subgroups have trivial intersection, then there are 15 · 7 = 105
elements belonging to these subsets, which is impossible.
Otherwise there is a pair P and Q of Sylow 2-subgroups, which intersect
H = P ∩ Q non-trivially. Let N be the normaliser of H. If |N | > 8,
then the index of N is at most five, and we are done.
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If n = 122 = 24 ·7, then we may assume that there are at least 2 Sylow
2-subgroups P and Q. Let H = P ∩Q. If |H| ≤ 2, then

|G| ≥ |PQ| = |P ||Q|
|H|

≥ 128,

a contradiction. Thus |H| ≥ 4. Let P ′ ⊂ P and Q′ ⊂ Q be two
subgroups, in which H has index two. Then H is normal in both P ′

and Q′ so that the normaliser N of H contains both P ′ and Q′. But
then

|N | ≥ 16.

If |N | = 16, then H is normal in a Sylow 2-subgroup, so that N contains
both P and Q, a contradiction. But then |H| > 16, and its index is at
most 4, and we are done.
If n = 132 = 22 ·3 ·11, then let x be the number of Sylow 11-subgroups.
Then

x = 1, 12, . . . ,

and divides 12. Thus we may assume that x = 12. In this case there
are 12 · 10 = 120 elements of order 11. Let y be the number of Sylow
3-subgroups. Then

y = 1, 4, 7, . . . ,

and y divides 44. But then we may assume that y ≥ 22 and so there
would be at least 22 · 2 = 44 elements of order 3, impossible.
If n = 144 = 24 · 32, then let x be the number of Sylow 3-subgroups.
Then

x = 1, 4, 7, . . . ,

and x divides 16. But then we may assume that x = 16. If every pair of
Sylow 3-subgroups have trivial intersection, then there are 16 · 8 = 128
elements belonging to these subgroups. The remaining 16 elements
must form the unique Sylow 2-subgroup. Otherwise the intersection H
of two Sylow 3-subgroups P and Q has cardinality 3. In this case the
normaliser N of H has order at least 27, so that its index is at most
four and we are done.
If n = 150 = 2 · 3 · 52, then a Sylow 5-subgroup has index six, and we
are done.
If n = 160 = 25 · 5. Then a Sylow 2-subgroup has index 5 and we are
done.
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