MODEL ANSWERS TO THE NINTH HOMEWORK

1. For Chapter 2, Section 11: 1. Conjugacy in S_{n} is determined by cycle type. There are three conjugacy classes,
$C_{1}=\{e\} \quad C_{2}=\{(2,3),(1,3),(1,2)\} \quad$ and $\quad C_{3}=\{(1,2,3),(1,3,2)\}$.
Everything commutes with the identity

$$
C_{e}=S_{3}
$$

and the index of S_{3} is one, the cardinality of C_{1}.
Consider $(1,2) \in C_{2}$. This only commutes with the identity and itself, so that

$$
C_{(1,2)}=\{e,(1,2)\} .
$$

The index is 3 which is the cardinality of C_{2}. Consider $(1,2,3) \in C_{2}$. This only commutes with all of its powers

$$
C_{(1,2,3)}=\{e,(1,2,3),(1,3,2)\} .
$$

The index is 2 which is the cardinality of C_{3}.
There is only conjugacy class with one element. It follows that the centre is trivial and so the class equation reads

$$
6=\left|S_{3}\right|=|Z|+\left|C_{2}\right|+\left|C_{3}\right|=1+3+2 .
$$

2. There are five conjugacy classes,
$C_{1}=\{I\}, \quad C_{2}=\left\{R, R^{3}\right\}, \quad C_{3}=\left\{R^{2}\right\}, \quad C_{4}=\left\{F_{1}, F_{2}\right\} \quad$ and $C_{5}=\left\{D_{1}, D_{2}\right\}$.
Everything commutes with the identity

$$
C_{I}=D_{4},
$$

and the index of D_{4} is one, the cardinality of C_{1}. Everything also commutes with R^{2},

$$
C_{R^{2}}=D_{4}
$$

and the index of D_{4} is one, the cardinality of C_{3}.
Consider $R \in C_{2}$. This only commutes with all of its powers

$$
C_{R}=\left\{I, R, R^{2}, R^{3}\right\} .
$$

The index is 2 which is the cardinality of C_{2}.
Now consider $F_{1} \in C_{4}$. This commutes with

$$
C_{F_{1}}=\left\{I, R^{2}, F_{1}, F_{2}\right\} .
$$

The index is 2 which is the cardinality of C_{4}.

Finally consider $D_{1} \in C_{5}$. This commutes with

$$
C_{D_{1}}=\left\{I, R^{2}, D_{1}, D_{2}\right\} .
$$

The index is 2 which is the cardinality of C_{5}.
There are two conjugacy classes with one element. It follows that the centre

$$
Z=\left\{I, R^{2}\right\}
$$

has two elements. In this case the class equation reads

$$
8=\left|D_{4}\right|=|Z|+\left|C_{2}\right|+\left|C_{4}\right|+C_{5} \mid=2+2+2+2 .
$$

3. Follows from (4).
4. Done in class.
5. There are two ways to prove this.

Recall that Z is normal in G. As the quotient G / Z has order 1 or p, the quotient is cyclic. But then G is abelian.
Aliter: Note that if $c \in G$ then $Z \subset C(c)$, the centraliser.
As Z has index at most p there are two cases, $Z=C(c)$ or $C(c)=G$. Suppose that $Z=C(c)$. In this case $c \in Z$ so that c commutes with everything.
Suppose that $C(c)=G$. In this case c commutes with everything.
Either way, an arbitrary element c of G commutes with everything and G is abelian.
10. Conjugation by x defines an inner automorphism of G,

$$
\phi: G \longrightarrow G \quad \text { given by } \quad \phi(g)=x g x^{-1}
$$

We want to show

$$
N(\phi(H))=\phi(N(H)))
$$

Suppose that y belongs to the RHS. We show that it belongs to the LHS.
By assumption $y=\phi(n)$, where $n \in N(H)$. Suppose that $k \in \phi(H)$. Then we may find $h \in H$ such that $k=\phi(h)$. We have

$$
\begin{aligned}
y k y^{-1} & =\phi(n) \phi(h) \phi\left(n^{-1}\right) \\
& =\phi\left(n h n^{-1}\right) .
\end{aligned}
$$

Now $l=n h n^{-1} \in H$ as $h \in H$ and $n \in N(H)$. Thus $\phi(l) \in \phi(H)$ and so $y \in N(\phi(H))$ as k is arbitrary.
It follows that

$$
N(\phi(H)) \supset \phi(N(H))) .
$$

We have shown that

$$
N(\psi(K)) \underset{2}{\supset} \psi(N(K)))
$$

for any subgroup K and any inner automorphism ψ. Let ψ be the inverse of ϕ and let $K=\phi(H)$. Then

$$
N(H) \supset \psi(N(\phi(H))) \quad \text { as } \quad H=\psi(K) .
$$

Applying ϕ to both sides gives

$$
N(\phi(H)) \subset \phi(N(H)) .
$$

Thus the LHS is contained in the RHS.
16. $36=2^{2} \cdot 3^{2}$. Thus there is a Sylow 3 -subgroup H of order 9. Let S be the set of left cosests. Define an action of G on S as follows

$$
G \times S \longrightarrow S \quad \text { given by } \quad g \cdot(a H)=(g a) H
$$

This gives rise to a homomorphism

$$
\phi: G \longrightarrow A(S)
$$

What can we say about the kernel N of ϕ ? If g is in the kernel then $\phi(g)$ fixes H, that is, it stabilises H. Thus $g H=g \cdot H=H$ and so $g \in H$. Thus

$$
\operatorname{Ker} \phi=N \subset H
$$

H has index 4 and so S has four elements. Thus $A(S) \simeq S_{4}$ has 24 elements. The image G^{\prime} of G is a subgroup of $A(S)$. 9 does not divide 24 and so 9 does not divide G^{\prime} by Lagrange. Thus the kernel must be non-trivial.
The kernel is a subgroup of H and so N is a normal subgroup of order 3 or 9 .
17. $108=2^{2} \cdot 3^{3}$. Thus there is a Sylow 3 -subgroup H of order 27. As before this gives us a group homomorphism

$$
\phi: G \longrightarrow S_{4} .
$$

Let N be the kernel. Then N is a normal subgroup of G and $\phi(G)$ is isomorphic to G / N. As 27 divides G but 9 does not divide $24=4$! it follows that the order of N is divisible by 9 . Thus N is a normal subgroup of order 9 or 27 .
2. (i) True.

Let $\phi: G \longrightarrow G$ be an automorphism of G. We have to show that $\phi(K) \subset K$.
As H is characteristically normal in G it follows that $\phi(H) \subset H$. Define a function

$$
\psi: H \longrightarrow H \quad \text { by the rule } \quad \psi(h)=\phi(h) \in H
$$

It is easy to see that ψ is a group homomorphism, as ϕ is a group homomorphism.

By assumption ϕ has an inverse $\rho . \rho(H) \subset H$ and so we may define a function

$$
\sigma: H \longrightarrow H \quad \text { by the rule } \quad \sigma(h)=\rho(h) \in H
$$

By what we already observed, σ is a group homomorphism and σ is clearly the inverse of ψ.
Thus ψ is an automorphism of H. As K is characteristically normal in H it follows that

$$
\begin{aligned}
\phi(K) & =\psi(K) \\
& \subset K .
\end{aligned}
$$

Thus K is characteristically normal in G.
(ii) False. Let
$G=A_{4}, \quad H=\{e,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\} \quad$ and $\quad K=\{e,(1,2)(3,4)\}$.
Then the elements of H consist of the identity and all of the elements of order 2. It follows that H is characteristically normal in A_{4}. K has index two in H and so K is normal in H.
However K is not normal in G. Let $\sigma=(1,2)(3,4) \in K$ and let $\tau=(1,2,3)$. Then

$$
\tau \sigma \tau^{-1}=(2,3)(1,4) \notin K .
$$

(iii) True. Let $g \in G$. As observed in (i) we get an automorphism of H by the rule

$$
\phi: H \longrightarrow H \quad \text { given by } \quad h \longrightarrow g h g^{-1}
$$

As K is characteristically normal in H we have

$$
\begin{aligned}
g K g^{-1} & =\phi(K) \\
& \subset K .
\end{aligned}
$$

Therefore K is normal in G.
(iv) False. If H is characteristically normal in G then it is certainly normal. Thus (ii) provides a counterexample.
3. Suppose that $G=\langle a\rangle$ is cyclic and let ϕ be an automorphism of G. Then ϕ is determined by what it does to a and it must send a to another generator of G. We have already seen that there is a unique isomorphism sending the generator of a cyclic generator to a generator. If G is infinite then the only generators of G are a and a^{-1}. Thus the automorphism group of G has two elements and $\operatorname{Aut}(G) \simeq \mathbb{Z}_{2}$.
Now suppose that a has order $n . a^{i}$ is a generator of G if and only if i is coprime to n. This defines a function

$$
f: \operatorname{Aut}(G) \longrightarrow U_{n} \quad \text { given by } \quad f(\phi)=i
$$

where $\phi(a)=a^{i}$. We check that f is a group homomorphism. Suppose that α and β are two automorphisms of G and let $\gamma=\alpha \beta$. Suppose that $\beta(a)=a^{i}$ and $\alpha(a)=a^{j}$. We have

$$
\begin{aligned}
\gamma(a) & =(\alpha \beta)(a) \\
& =(\alpha \circ \beta)(a) \\
& =\alpha(\beta(a)) \\
& =\alpha\left(a^{j}\right) \\
& =\alpha(a)^{j} \\
& =\left(a^{i}\right)^{j} \\
& =a^{i j} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
f(\gamma) & =i j \\
& =f(\alpha) f(\beta),
\end{aligned}
$$

so that f is an isomorphism.
4. Let G be a group of order n. If n is prime then G is cyclic.

So we may assume that $n=14$. If G is abelian then G is isomorphic to

$$
G \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{7} \simeq \mathbb{Z}_{14}
$$

Suppose that G is not abelian. The order of an element must be a divisor of 14 , so that the possible orders are $1,2,7$ or 14 . G is not cyclic, as it is not abelian and so there are no elements of order 14. There is only one element of order 1 , the identity. As G is not abelian, not every element has order 2 .
It follows that there is an element a of order 7 . Let H be the group it generates. Then H has index two in G and so H is normal in G. G / H is a group of order two. Pick $b \in G \backslash H$. The image of b in G / H has order 2 . Thus the order of b is divisible by 2 . Thus the order of b is two, as it is not 14 .
Note that $G=\langle a, b\rangle$, as the order of the group generated by a and b is divisible by both 2 and 7 .
At this point we can proceed as in the lecture notes. Here is an alternative and more robust way to proceed.
Conjugation by b induces an automorphism of G. It restricts to an automorphism ϕ of H, as H is normal

$$
\phi: H \longrightarrow H \quad \text { given by } \quad \phi(h)=b h b^{-1} \in H .
$$

As G is not abelian, $b a b^{-1} \neq a$ and so ϕ is non-trivial. Thus ϕ has order 2 as b has order 2 .

By question (3),

$$
\operatorname{Aut}(H)=U_{7}
$$

The elements of U_{7} are the integers from 1 to $6.2^{2}=4$ and $2^{3}=8=1$ $\bmod 7$. Thus 2 is an element of order $3.3^{2}=9=2 \bmod 7$ so that 3 is an element of order 6 . It follows that $U_{7}=\langle 3\rangle$ is cyclic and there is unique element of order $2,3^{3}=27=6 \bmod 7$.
In this case

$$
\phi(a)=a^{6}=a^{-1} \quad \text { so that } \quad b a b^{-1}=a^{-1} .
$$

Thus $G \simeq D_{7}$, the Dihedral group of order 14 .
Thus there are two groups of order 14, the cyclic group and the Dihedral group.
Challenge Problems (Just for fun)
5. $n=12=2^{2} \cdot 3$. If G is abelian then G is isomorphic to either

$$
\mathbb{Z}_{4} \times \mathbb{Z}_{3} \simeq \mathbb{Z}_{12} \quad \text { or } \quad \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{6}
$$

Suppose that G is not abelian.
TBC
6. There are many ways to proceed; the main point is to try to be reasonably efficient. Suppose that $61 \leq n \leq 167$. By Sylow's theorem, we may assume that n is not of the form $m p^{k}$, where $m<p$ and p is prime (note that this includes the case when n is either a power of a prime or the product of two primes).
This leaves
$63,70,72,80,84,90,96,105,108,112,120,126,132,135,140,144,150,154,160,165$.
Suppose that n has the form $p^{\alpha} q^{\beta}$, where $p<q$. Then the number of Sylow q-subgroups is equal to

$$
1, p, p^{2}, p^{3}, \ldots .
$$

If this is not equal to 1 , it must be greater than $q>p$, so that there must be at least p^{2} such subgroups. Suppose that there are p^{2}. Then q divides $p^{2}-1=(p-1)(p+1)$. It follows that $q=p+1$, so that $p=2$ and $q=3$. Otherwise, the number of such subgroups is at least p^{3}. If $\beta=1$, this gives at least $p^{3}(q-1)$ elements of order q. If $\alpha=3$, then there are only p^{3} elements left and there is then a unique Sylow p-subgroup.
It follows that if n is not of the form $2^{\alpha} 3^{\beta}$, and either $\alpha \leq 2$ or $\beta=1$ and $\alpha=3$, then G is not simple. Thus we can eliminate all such numbers. This leaves:

$$
70,72,84,90,96,105,108,120,126,132,140,144,150,154,165 .
$$

Now suppose that the largest prime dividing n is eleven. Let x be the number of Sylow 11-subgroups. Then there are at least $10 x$ elements of G whose order is a power of 11 . Since $10 x<168$, we see that $x \leq 16$. But then

$$
x=1,12 .
$$

Thus assuming that $x \neq 1, n$ is divisible by 12 .
Now suppose that the largest prime dividing n is seven. Let x be the number of Sylow 7 -subgroups. Since $6 x<168$, we see that $x<28$. But then

$$
x=1,8,15,22 .
$$

Thus assuming that $x \neq 1$, then either n is divisible by 2^{3} or $3 \cdot 5$. This leaves

$$
72,80,90,96,105,108,112,120,132,144,150,160 .
$$

We handle the rest using a case by case analysis. Note first that if we can find a nontrivial group homomorphism

$$
\rho: G \longrightarrow S_{k},
$$

where either n does not divide k !, or $n=k$!, then we are done. Indeed we may assume that the kernel is trivial, in which case ρ is injective, so that by Lagrange $G \simeq S_{k}$. But then A_{k} is a proper normal subgroup. Note that G acts on the Sylow p-subgroups and that G acts on the left cosets of any subgroup H. So the number of Sylow p-subgroups and the index of any subgroup is at most 4 , at most 5 if n does not divide 120 , or $n=120$, and at most 6 , if n does not divide 720 .
Suppose that $n=72=2^{3} \cdot 3^{2}$. Let x be the number of Sylow 3subgroups. Then

$$
x=1,4,7, \ldots
$$

and x divides 8 . But then $x \leq 4$ and we are done.
If $n=80=2^{4} \cdot 5$, then a Sylow 2-subgroup has index 5 and we are done.
If $n=90=2 \cdot 3^{2} \cdot 5$, then let x be the number of Sylow 5 -subgroups. Then

$$
x=1,6,11,16,
$$

and divides 18. Thus we may assume that $x=6$, and there are 30 elements of order 5 . Now let y be the number of Sylow 3 -subgroups. Then

$$
y=1,4,7,10
$$

and divides 10. Thus we may assume that $y=10$. Suppose that every two Sylow 3 -subgroups intersect only in the trivial group. Then there are $10 \cdot 8=80$ elements which belong to these groups, which is far too
many. The only possibility is that there are two Sylow 3 -subgroups P and Q such that $|P \cap Q|=3$. Let N be the normaliser of $H=P \cap Q$. As H is normal in P and Q,

$$
N \supset\langle P, Q\rangle \supset P Q
$$

Thus N contains at least

$$
\frac{|P||Q|}{|H|}=27,
$$

elements. Thus the index of N is at most three, and we are done. If $n=96=2^{5} \cdot 3$, then the number of Sylow 2-subgroups divides 3 , and we are done.
If $n=105=3 \cdot 5 \cdot 7$, let x be the number of Sylow 7 -subgroups. Then

$$
x=1,8,15,
$$

and divides 15 . Thus we may assume that $x=15$. But then there are $15 \cdot 6=90$ elements of order 5 . Let y be the number of Sylow 5 -subgroups. Then

$$
y=1,6,11,16,21
$$

and divides 21. Thus we may assume that $y=21$, so that there are $21 \cdot 4$ elements of order five, impossible.
If $n=108=2^{2} \cdot 3^{3}$, then the index of a Sylow 3 -subgroup Q is 4 and we are done.
If $n=120=2^{3} \cdot 3 \cdot 5$, then let x be the number of Sylow 5 -subgroups. Then

$$
x=1,6,11,16,21, \ldots,
$$

and x divides 24. But then $x=6$, and there are 24 elements of order 5 . Let y be the number of Sylow 3 -subgroups. Then

$$
y=1,4,7,10, \ldots,
$$

and y divides 40 . Thus $y=10$, and there are 20 elements of order 3 . Let z be the number of Sylow 2-subgroups. Then

$$
z=1,3,5,7, \ldots,
$$

and z divides 15 . Thus we may assume that $z=15$. If every pair of Sylow 2-subgroups have trivial intersection, then there are $15 \cdot 7=105$ elements belonging to these subsets, which is impossible.
Otherwise there is a pair P and Q of Sylow 2-subgroups, which intersect $H=P \cap Q$ non-trivially. Let N be the normaliser of H. If $|N|>8$, then the index of N is at most five, and we are done.

If $n=122=2^{4} \cdot 7$, then we may assume that there are at least 2 Sylow 2-subgroups P and Q. Let $H=P \cap Q$. If $|H| \leq 2$, then

$$
|G| \geq|P Q|=\frac{|P||Q|}{|H|} \geq 128
$$

a contradiction. Thus $|H| \geq 4$. Let $P^{\prime} \subset P$ and $Q^{\prime} \subset Q$ be two subgroups, in which H has index two. Then H is normal in both P^{\prime} and Q^{\prime} so that the normaliser N of H contains both P^{\prime} and Q^{\prime}. But then

$$
|N| \geq 16
$$

If $|N|=16$, then H is normal in a Sylow 2-subgroup, so that N contains both P and Q, a contradiction. But then $|H|>16$, and its index is at most 4 , and we are done.
If $n=132=2^{2} \cdot 3 \cdot 11$, then let x be the number of Sylow 11-subgroups. Then

$$
x=1,12, \ldots,
$$

and divides 12 . Thus we may assume that $x=12$. In this case there are $12 \cdot 10=120$ elements of order 11. Let y be the number of Sylow 3 -subgroups. Then

$$
y=1,4,7, \ldots,
$$

and y divides 44 . But then we may assume that $y \geq 22$ and so there would be at least $22 \cdot 2=44$ elements of order 3 , impossible.
If $n=144=2^{4} \cdot 3^{2}$, then let x be the number of Sylow 3 -subgroups. Then

$$
x=1,4,7, \ldots,
$$

and x divides 16. But then we may assume that $x=16$. If every pair of Sylow 3-subgroups have trivial intersection, then there are $16 \cdot 8=128$ elements belonging to these subgroups. The remaining 16 elements must form the unique Sylow 2-subgroup. Otherwise the intersection H of two Sylow 3 -subgroups P and Q has cardinality 3 . In this case the normaliser N of H has order at least 27, so that its index is at most four and we are done.
If $n=150=2 \cdot 3 \cdot 5^{2}$, then a Sylow 5 -subgroup has index six, and we are done.
If $n=160=2^{5} \cdot 5$. Then a Sylow 2 -subgroup has index 5 and we are done.

