MODEL ANSWERS TO THE NINTH HOMEWORK

1. For Chapter 2, Section 11: 1. Conjugacy in S, is determined by
cycle type. There are three conjugacy classes,

Cy ={e} Cy =1{(2,3),(1,3),(1,2)} and Cs ={(1,2,3),(1,3,2)}.
Everything commutes with the identity
Ce = 537

and the index of S3 is one, the cardinality of Cf.
Consider (1,2) € Cy. This only commutes with the identity and itself,
so that

C(L?) - {67 (17 2)}
The index is 3 which is the cardinality of Cj.
Consider (1,2,3) € Cy. This only commutes with all of its powers
0(1’273) = {6, (1, 2, 3), (1, 3, 2)}

The index is 2 which is the cardinality of Cj.
There is only conjugacy class with one element. It follows that the
centre is trivial and so the class equation reads

6 =[S3] = |Z] 4+ [Co| +|Cs] =1+ 3 + 2.
2. There are five conjugacy classes,
C,={I}, Cy={R,R*}, C3={R’}, Cy={F,F} and Cs;={D;,D,}.
Everything commutes with the identity
Cr = Dy,

and the index of D, is one, the cardinality of C;. Everything also
commutes with R?,
CR2 - D4,

and the index of D, is one, the cardinality of Cs.
Consider R € (5. This only commutes with all of its powers

Cr={I,R,R* R*}.

The index is 2 which is the cardinality of Cj.
Now consider F} € Cy. This commutes with

Cr, = {I, R* F\, I}

The index is 2 which is the cardinality of C}.
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Finally consider D; € C5. This commutes with
CDl - {]7 R2’ Dla DQ}

The index is 2 which is the cardinality of Cj.
There are two conjugacy classes with one element. It follows that the
centre
7Z ={I,R*}
has two elements. In this case the class equation reads
8 = |Dy| =|Z| 4+ |Co| +|Cs| + Cs5| =2+2+2+2.

3. Follows from (4).
4. Done in class.
5. There are two ways to prove this.
Recall that Z is normal in G. As the quotient G/Z has order 1 or p,
the quotient is cyclic. But then G is abelian.
Aliter: Note that if ¢ € G then Z C C(c), the centraliser.
As Z has index at most p there are two cases, Z = C(c) or C(c) = G.
Suppose that Z = C(c). In this case ¢ € Z so that ¢ commutes with
everything.
Suppose that C'(¢) = G. In this case ¢ commutes with everything.
Either way, an arbitrary element ¢ of G commutes with everything and
G is abelian.
10. Conjugation by x defines an inner automorphism of G,

o:G— G given by #(g) = zgz "t

We want to show

N(¢(H)) = ¢(N(H))).
Suppose that y belongs to the RHS. We show that it belongs to the
LHS.

By assumption y = ¢(n), where n € N(H). Suppose that k € ¢(H).
Then we may find h € H such that k = ¢(h). We have

yky " = ¢(n)o(h)d(n")
= ¢p(nhn™t).
Now [ =nhn™' € H as h € H and n € N(H). Thus ¢(I) € ¢(H) and

soy € N(¢(H)) as k is arbitrary.
It follows that

N(¢(H)) D ¢(N(H))).
We have shown that

N((K)) 2 ¢(N(K)))
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for any subgroup K and any inner automorphism . Let ¢ be the
inverse of ¢ and let K = ¢(H). Then

N(H) D ¢(N(¢(H)))  as  H=y(K).
Applying ¢ to both sides gives

N(¢(H)) C ¢(N(H)).
Thus the LHS is contained in the RHS.

16. 36 = 22 - 3. Thus there is a Sylow 3-subgroup H of order 9. Let
S be the set of left cosests. Define an action of G on S as follows

GxS— S givenby ¢-(aH)= (ga)H.
This gives rise to a homomorphism
¢: G — A(S9).

What can we say about the kernel N of ¢? If g is in the kernel then
¢(g) fixes H, that is, it stabilises H. Thus gH = g- H = H and so
g € H. Thus

Ker¢o =N C H.

H has index 4 and so S has four elements. Thus A(S) ~ S, has 24
elements. The image G’ of G is a subgroup of A(S). 9 does not divide
24 and so 9 does not divide GG’ by Lagrange. Thus the kernel must be
non-trivial.

The kernel is a subgroup of H and so N is a normal subgroup of order
3or9.

17. 108 = 22 - 3%, Thus there is a Sylow 3-subgroup H of order 27. As
before this gives us a group homomorphism

¢Z G—>S4

Let N be the kernel. Then N is a normal subgroup of G and ¢(G) is
isomorphic to G/N. As 27 divides G but 9 does not divide 24 = 4!
it follows that the order of N is divisible by 9. Thus N is a normal
subgroup of order 9 or 27.

2. (i) True.

Let ¢: G — G be an automorphism of G. We have to show that
o(K) C K.

As H is characteristically normal in G it follows that ¢(H) C H. Define
a function

v: H— H  bytherule  (h)=¢(h) € H.

It is easy to see that ¢ is a group homomorphism, as ¢ is a group

homomorphism.
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By assumption ¢ has an inverse p. p(H) C H and so we may define a
function

o: H— H by the rule o(h)=p(h) € H.

By what we already observed, o is a group homomorphism and o is
clearly the inverse of 1.

Thus v is an automorphism of H. As K is characteristically normal in
H it follows that

P(K) = ¢(K)
C K.

Thus K is characteristically normal in G.
(ii) False. Let

G=Ay H=1e (1,2)3,4),(1,3)(2.4),(1,4)(23)} and K ={e (1,2)(3,4)}.

Then the elements of H consist of the identity and all of the elements
of order 2. It follows that H is characteristically normal in A,. K has
index two in H and so K is normal in H.

However K is not normal in G. Let ¢ = (1,2)(3,4) € K and let
7 =(1,2,3). Then

Tor ' =(2,3)(1,4) ¢ K.

(iii) True. Let g € G. As observed in (i) we get an automorphism of
H by the rule

¢o: H— H given by h — ghg™*
As K is characteristically normal in H we have

gKg™' = ¢(K)
c K.

Therefore K is normal in G.
(iv) False. If H is characteristically normal in G then it is certainly
normal. Thus (ii) provides a counterexample.
3. Suppose that G = (a) is cyclic and let ¢ be an automorphism of
G. Then ¢ is determined by what it does to a and it must send a to
another generator of G. We have already seen that there is a unique
isomorphism sending the generator of a cyclic generator to a generator.
If G is infinite then the only generators of G' are a and a~!. Thus the
automorphism group of G has two elements and Aut(G) ~ Zs.
Now suppose that a has order n. a’ is a generator of G if and only if i
is coprime to n. This defines a function

f: Auwt(G) — U, given by f(o) =1,
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where ¢(a) = a’. We check that f is a group homomorphism. Suppose
that  and g are two automorphisms of G and let v = af5. Suppose
that 8(a) = a' and a(a) = a’. We have
V(a) = (af)(a)

= (a0 B)(a)

= Oé(
= afad)

(

I
Q

ai)j

—~

Thus

so that f is an isomorphism.
4. Let G be a group of order n. If n is prime then G is cyclic.
So we may assume that n = 14. If GG is abelian then G is isomorphic
to

G2Z2><Z72Z14.
Suppose that G is not abelian. The order of an element must be a
divisor of 14, so that the possible orders are 1, 2, 7 or 14. G is not
cyclic, as it is not abelian and so there are no elements of order 14.
There is only one element of order 1, the identity. As G is not abelian,
not every element has order 2.
It follows that there is an element a of order 7. Let H be the group it
generates. Then H has index two in G and so H is normal in G. G/H
is a group of order two. Pick b € G\ H. The image of b in G/H has
order 2. Thus the order of b is divisible by 2. Thus the order of b is
two, as it is not 14.
Note that G = (a, b), as the order of the group generated by a and b is
divisible by both 2 and 7.
At this point we can proceed as in the lecture notes. Here is an alter-
native and more robust way to proceed.
Conjugation by b induces an automorphism of G. It restricts to an
automorphism ¢ of H, as H is normal

¢: H— H  given by  ¢(h) =bhb™' € H.

As @ is not abelian, bab™ # a and so ¢ is non-trivial. Thus ¢ has

order 2 as b has order 2.
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By question (3),
Aut(H) = U7.

The elements of U; are the integers from 1 to 6. 22 =4 and 2 =8 =1
mod 7. Thus 2 is an element of order 3. 32 =9 = 2 mod 7 so that 3
is an element of order 6. It follows that U; = (3) is cyclic and there is
unique element of order 2, 3> =27 =6 mod 7.

In this case

p(a) =a® =at so that bab™' =at.

Thus G ~ D7, the Dihedral group of order 14.

Thus there are two groups of order 14, the cyclic group and the Dihedral
group.

Challenge Problems (Just for fun)

5. m =12 =22.3. If G is abelian then G is isomorphic to either

Z4XZgZle or ZQXZQXZ;;ZZQXZG.

Suppose that G is not abelian.

TBC ...

6. There are many ways to proceed; the main point is to try to be
reasonably efficient. Suppose that 61 < n < 167. By Sylow’s theorem,
we may assume that n is not of the form mp*, where m < p and p is
prime (note that this includes the case when n is either a power of a
prime or the product of two primes).

This leaves

63,70, 72,80, 84, 90, 96, 105, 108, 112, 120, 126, 132, 135, 140, 144, 150, 154, 160, 165.

Suppose that n has the form p®¢®, where p < ¢. Then the number of
Sylow g-subgroups is equal to

1?p7p27p37 cect

If this is not equal to 1, it must be greater than ¢ > p, so that there
must be at least p? such subgroups. Suppose that there are p?>. Then
q divides p*> — 1 = (p — 1)(p + 1). It follows that ¢ = p + 1, so that
p =2 and ¢ = 3. Otherwise, the number of such subgroups is at least
p. If B =1, this gives at least p*(q — 1) elements of order ¢. If a = 3,
then there are only p?® elements left and there is then a unique Sylow
p-subgroup.

It follows that if n is not of the form 2%3°, and either &« <2 or B =1
and o = 3, then G is not simple. Thus we can eliminate all such
numbers. This leaves:

70,72,84,90, 96,105,108, 120, 126, 132, 140, 144, 150, 154, 165.
6



Now suppose that the largest prime dividing n is eleven. Let x be the
number of Sylow 11-subgroups. Then there are at least 10z elements of
G whose order is a power of 11. Since 10x < 168, we see that = < 16.
But then
r=1,12.

Thus assuming that x # 1, n is divisible by 12.
Now suppose that the largest prime dividing n is seven. Let x be the
number of Sylow 7-subgroups. Since 6x < 168, we see that x < 28.
But then

x=1,8,15,22.
Thus assuming that x # 1, then either n is divisible by 23 or 3 - 5.
This leaves

72,80,90,96, 105, 108, 112, 120, 132, 144, 150, 160.

We handle the rest using a case by case analysis. Note first that if we
can find a nontrivial group homomorphism

p:G—)Sk,

where either n does not divide k!, or n = k!, then we are done. Indeed
we may assume that the kernel is trivial, in which case p is injective, so
that by Lagrange G ~ Sj. But then A is a proper normal subgroup.
Note that GG acts on the Sylow p-subgroups and that G acts on the left
cosets of any subgroup H. So the number of Sylow p-subgroups and
the index of any subgroup is at most 4, at most 5 if n does not divide
120, or n = 120, and at most 6, if n does not divide 720.
Suppose that n = 72 = 23 .32, Let x be the number of Sylow 3-
subgroups. Then

r=1,4,7,...
and z divides 8. But then x < 4 and we are done.
If n =80 = 2%.5, then a Sylow 2-subgroup has index 5 and we are
done.
If n =90 = 2-32-5, then let x be the number of Sylow 5-subgroups.
Then

xr=1,6,11,16,
and divides 18. Thus we may assume that x = 6, and there are 30
elements of order 5. Now let y be the number of Sylow 3-subgroups.
Then

=1,4,7,10,

and divides 10. Thus we may assume that y = 10. Suppose that every
two Sylow 3-subgroups intersect only in the trivial group. Then there

are 10 - 8 = 80 elements which belong to these groups, which is far too
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many. The only possibility is that there are two Sylow 3-subgroups P
and @ such that [P N Q| = 3. Let N be the normaliser of H = PN Q.
As H is normal in P and @,

N D (P,Q) D PQ.

Thus N contains at least

PlIQl

27,
|H]|

elements. Thus the index of N is at most three, and we are done.

If n = 96 = 2° - 3, then the number of Sylow 2-subgroups divides 3,
and we are done.

If n=105=3-5-7, let x be the number of Sylow 7-subgroups. Then

r=1,8,15,

and divides 15. Thus we may assume that x = 15. But then there
are 15 -6 = 90 elements of order 5. Let y be the number of Sylow
5-subgroups. Then

y=1,6,11,16, 21,

and divides 21. Thus we may assume that y = 21, so that there are
21 - 4 elements of order five, impossible.

If n = 108 = 22 - 32, then the index of a Sylow 3-subgroup @ is 4 and
we are done.

If n =120 = 23-3 -5, then let  be the number of Sylow 5-subgroups.
Then

z=1,6,11,16,21,...,

and z divides 24. But then x = 6, and there are 24 elements of order
5. Let y be the number of Sylow 3-subgroups. Then

y=1,4,7,10,...,

and y divides 40. Thus y = 10, and there are 20 elements of order 3.
Let z be the number of Sylow 2-subgroups. Then

2=1,3,5,7,...,

and z divides 15. Thus we may assume that z = 15. If every pair of
Sylow 2-subgroups have trivial intersection, then there are 15-7 = 105
elements belonging to these subsets, which is impossible.

Otherwise there is a pair P and @) of Sylow 2-subgroups, which intersect
H = PN Q non-trivially. Let N be the normaliser of H. If |[N| > 8§,

then the index of IV is at most five, and we are done.
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If n =122 = 2*.7, then we may assume that there are at least 2 Sylow
2-subgroups P and Q. Let H = PN Q. If |H| < 2, then

PlQ)]
G| > |PQ| = —~= > 128
a contradiction. Thus |H| > 4. Let P C P and @' C Q be two
subgroups, in which H has index two. Then H is normal in both P’
and Q' so that the normaliser N of H contains both P’ and ()’. But
then
|IN| > 16.

If |[N| = 16, then H is normal in a Sylow 2-subgroup, so that N contains
both P and @, a contradiction. But then |H| > 16, and its index is at
most 4, and we are done.
If n = 132 = 22-3-11, then let = be the number of Sylow 11-subgroups.
Then

xr=1,12,...,
and divides 12. Thus we may assume that x = 12. In this case there
are 12 - 10 = 120 elements of order 11. Let y be the number of Sylow
3-subgroups. Then

y=1,4,7,...,
and y divides 44. But then we may assume that y > 22 and so there
would be at least 22 - 2 = 44 elements of order 3, impossible.
If n = 144 = 2% . 32, then let x be the number of Sylow 3-subgroups.
Then

x=1,47,...,
and x divides 16. But then we may assume that x = 16. If every pair of
Sylow 3-subgroups have trivial intersection, then there are 16 -8 = 128
elements belonging to these subgroups. The remaining 16 elements
must form the unique Sylow 2-subgroup. Otherwise the intersection H
of two Sylow 3-subgroups P and () has cardinality 3. In this case the
normaliser N of H has order at least 27, so that its index is at most
four and we are done.
If n =150 = 2-3- 52, then a Sylow 5-subgroup has index six, and we
are done.
If n =160 = 2°-5. Then a Sylow 2-subgroup has index 5 and we are
done.



