MODEL ANSWERS TO THE EIGHTH HOMEWORK

1. For Chapter 3, Section 3: 1. (a)

$$
\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 4 & 5 & 1 & 3 & 7 & 8 & 9 & 6
\end{array}\right)=(1,2,4)(3,5)(6,7,8,9),
$$

a product of $2+1+3=6$ transpositions. Even.
(b) $5+2=7$, odd.
(c) $5+5=10$, even.
(d) $1+2+1+2+2=8$, even.

1. For Chapter 3, Section 3: 2. We have already seen that a k-cycle is a product of $k-1$ transpositions. Thus the result is clear.
2. For Chapter 3, Section 3: 3. Clear, since they have the same cycle type.
3. For Chapter 3, Section 3: 5. First the bottom row is missing 4 and
4. Let us try

$$
\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 1 & 2 & 4 & 5 & 7 & 8 & 9 & 6
\end{array}\right)=(1,3,2)(6,7,8,9)
$$

This is a product of $5=2+3$ tranpositions. Thus this permutation is odd. Now consider

$$
\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 1 & 2 & 5 & 4 & 7 & 8 & 9 & 6
\end{array}\right) .
$$

This differs from the first permutation by a transposition. Hence it is even, as the other is odd.

1. For Chapter 3, Section 3: 6. Since every element of A_{n} is a product of an even number of transpositions, pairing off the transpositions arbitrarily, it suffices to prove that the product of two transpositions is a product of 3 -cycles.
Suppose that (a, b) and (c, d) are two transpositions. There are three cases. If $\{a, b\}=\{c, d\}$, then their product is the identity, which is the product of any 3 -cycle with its inverse.
Now suppose that $\{a, b\} \cap\{c, d\}$ contains one element, say a. Then

$$
(a, b)(a, c)=(a, c, b)
$$

a 3-cycle.
Finally suppose that $\{a, b\} \cap\{c, d\}$ is empty. Then

$$
(a, b)(c, d)=(a, b)(a, c)(a, c)(c, d)=(a, c, b)(c, d, a),
$$

a product of two 3-cycles.

1. For Chapter 3, Section 3: 7. As every element of A_{n} is a product of 3 -cycles, it suffices to prove that every 3 -cycle is a product of n-cycles. By symmetry (in fact conjugation by elements of S_{n}) it suffices to prove that there is a single 3 -cycle, which is a product of n-cycles. Consider the elements $\sigma=(1,2,3,4, \ldots, n)$ and $\tau=(1,3,2, n, n-1, \ldots, 4)$. In this case

$$
\sigma \tau=(1,4,2)
$$

as is easily seen by direct computation.

1. For Chapter 3, Section 3: 8. Done in class. Let

$$
V=\{e,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\} .
$$

Then V is easily seen to be closed under products and inverses. As V is a union of conjugacy classes, it follows that V is normal (not only in A_{4}, but even in S_{4} in fact).
Challenge Problems (Just for fun)
2. For Chapter 3, Section 3: 9. This is a little tricky and there are many different ways to prove this result. Let N be a normal subgroup of A_{n} and suppose that $N \neq\{e\}$.
Suppose that $\alpha \neq e$ is an element of N, that moves the fewest number of elements. We try to prove that α is in fact a 3 -cycle. Suppose not; we will derive a contradiction.
First suppose that in the cycle decomposition of α, we have a cycle of length greater than two. Putting this first and relabelling, we have

$$
\alpha=(1,2,3, \ldots) \ldots
$$

We may also assume that α does not fix 4 . Consider conjugating α by $\beta=(1,2)(3,4)$ to get α_{1}. Then

$$
\alpha_{1}=(2,1,4, \ldots) .
$$

Note that

$$
\gamma=\alpha_{1} \alpha=\beta \alpha \beta^{-1} \alpha \in N,
$$

as N is normal. γ fixes everything that α fixes and also fixes 1 , a contradiction, as α is supposed to fix the most elements.
Therefore α is a product of disjoint transpositions:

$$
\alpha=(1,2)(3,4) \ldots
$$

Consider conjugating α by $\beta=(3,4,5)$ to get α_{1}. Then

$$
\alpha_{1}=(1,2)(4,5) \ldots,
$$

Then

$$
\gamma=\alpha_{1} \alpha=(3,4)(4,5) \cdots \in N
$$

which fixes 1 and 2 and fixes everything α fixes except possibly 5 , a contradiction.
Thus α is a 3-cycle.
For Chapter 3, Section 3: 10. This follows almost immediately from 9 and 6 . In S_{n}, the conjugacy classes are determined by cycle type. In particular any two 3 -cycles are conjugate in S_{n}. We want to show that they are conjugate in A_{n}. Now suppose that σ and σ^{\prime} are two 3cycles and that $\tau \in S_{n}$ conjugates σ to σ^{\prime}. If τ is even there is nothing to prove. Otherwise pick a transposition τ_{1} that is disjoint from the numbers that σ permutes (possible as $n \geq 5$). Then $\tau \tau_{1}$ is even and is easily seen to still conjugate σ to σ^{\prime}.
Let N be a normal subgroup of A_{n}. Suppose that $N \neq\{e\}$. Then by the previous question N must contain a 3 -cycle. As N is normal, it must contain every 3 -cycle, as any two 3 -cycles are conjugate. But then by $6, N=A_{n}$.

