MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. For Chapter 2, Section 9: 1. Let $\phi: G_{1} \times G_{2} \longrightarrow G_{2} \times G_{1}$ be the homomorphism that sends $\left(g_{1}, g_{2}\right)$ to $\left(g_{2}, g_{1}\right)$. This is clearly a bijection. We check that it is a homomorphism. Suppose that $\left(g_{1}, g_{2}\right)$ and $\left(h_{1}, h_{2}\right) \in G_{1} \times G_{2}$. Then

$$
\begin{aligned}
\phi\left(\left(g_{1}, g_{2}\right)\left(h_{1}, h_{2}\right)\right) & =\phi\left(g_{1} h_{1}, g_{2} h_{2}\right) \\
& =\left(g_{2} h_{2}, g_{1} h_{1}\right) \\
& =\left(g_{2}, g_{1}\right)\left(h_{2}, h_{1}\right) \\
& =\phi\left(g_{1}, g_{2}\right) \phi\left(h_{1}, h_{2}\right) .
\end{aligned}
$$

Thus ϕ is a homomorphism.
Alternatively, we could use the universal property of the product. Both $G_{1} \times G_{2}$ and $G_{2} \times G_{1}$ satisfy the universal properties of a product and so they must be isomorphic, by uniqueness.

1. For Chapter 2, Section 9: 2. These properties are clearly preserved by isomorphism, so we may as well assume that $G_{1}=\mathbb{Z}_{m}$ and $G_{2} \simeq \mathbb{Z}_{n}$. Consider $(1,1) \in G_{1} \times G_{2}$. Suppose that $k(1,1)=(0,0)$. Then $k=0$ $\bmod m$ and $k=0 \bmod n$. As m and n are coprime it follows that $k=0 \bmod m n$. But then the order of $(1,1)$ is at least $m n$. As $G_{1} \times G_{2}$ is a group of order $m n$, it follows that $G_{1} \times G_{2}$ is cyclic, generated by $(1,1)$.
Now suppose that m and n are not coprime. Suppose that $l=m n / d$, where d is a non-trivial divisor of both m and n (for example the gcd). Pick $(a, b) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n}$. Then $l(a, b)=(l a, l b)$. But $l a$ is divisible by m and so $l a=0 \bmod m$ and $l b$ is divisible by n so that $l b=0 \bmod n$. But then the order of (a, b) is at most l and $G_{1} \times G_{2}$ is certainly not cyclic.
2. For Chapter 2, Section 9: 3. Define a homomorphism

$$
\phi: G \longrightarrow T
$$

by the rule $\phi(g)=(g, g)$. We check that this is a homomorphism. Suppose that g and $h \in G$. Then

$$
\begin{aligned}
\phi(g h) & =(g h, g h) \\
& =(g, g)(h, h) \\
& =\phi(g) \phi(h) .
\end{aligned}
$$

Thus ϕ is a homomorphism. ϕ is clearly a bijection and so it is an isomorphism.
Suppose that T is normal. Pick a and b in G. Then $(a, a) \in T$ and the conjugate of this element by (b, e) is also in T. Thus

$$
(b, e)(a, a)(b, e)^{-1}=\left(b a b^{-1}, a\right) \in T
$$

As this is an element of T, we have $b a b^{-1}=a$ so that $b a=a b$. As a and b are arbitrary, G is abelian.
Now suppose that G is abelian. Pick $(g, g) \in T$ and $(a, b) \in G \times G$. Then

$$
\begin{aligned}
(a, b)(g, g)(a, b)^{-1} & =\left(a g a^{-1}, b g b^{-1}\right) \\
& =\left(g a a^{-1}, g b b^{-1}\right) \\
& =(g, g) .
\end{aligned}
$$

Thus T is normal.
2. Let $h \in H$ and $k \in K$ and let $a=h k h^{-1} k^{-1}$. As K is normal, $h k h^{-1} \in K$, so that $a=\left(h k h^{-1}\right) k^{-1} \in K$. On the other hand, as H is normal $k h^{-1} k^{-1} \in H$ and so $a=h\left(k h^{-1} k^{-1}\right) \in H$. Thus $a \in H \cap K$ and so $a=e$. Thus $h k=k h$ and h and k commute.
3. Suppose that G is isomorphic to $G^{\prime} \times H^{\prime}$. Then we might as well assume that $G=H^{\prime} \times K^{\prime}$. In this case take $H=H^{\prime} \times\{f\}$ and $K^{\prime}=\{e\} \times K$, where e is the identity of H^{\prime} and f is the identity of K^{\prime}. Let p be the projection of G down to H^{\prime}. Then p is a homomorphism, since this is part of the defining property of a categorical product. The kernel is K, so that K is normal in G. Similarly H is normal in G.
Define a homomorphism

$$
\phi: H^{\prime} \longrightarrow H
$$

by sending h to (h, e). ϕ is clearly an isomorphism. Similarly K is isomorphic to K^{\prime}. Hence the first property.
Suppose that $(a, b) \in H \cap K$. Then $a=e$ and $b=f$ so that $(a, b)=$ (e, f) is the identity of G. Hence the second property.
Suppose that $\left(h^{\prime}, k^{\prime}\right) \in G$, where $h^{\prime} \in H^{\prime}$ and $k^{\prime} \in K^{\prime}$. Then $\left(h^{\prime}, k^{\prime}\right)=$ $\left(h^{\prime}, f\right)\left(e, k^{\prime}\right)=h k$ where $h=\left(h^{\prime}, f\right) \in H$ and $k=\left(e, k^{\prime}\right) \in K$. Thus $\left(h^{\prime}, k^{\prime}\right) \in H \vee K$ and $G=H \vee K$. Hence the third property.
Now suppose that (1)-(3) hold. Since H and K generate G, every element of G is a product of elements of H and K. As H and K are normal in G, the elements of H commute with the elements of K. Thus it is easy to prove that $H K$ is closed under products and inverses and it follows that every element of G is of the form $h k$ so that $G=H K$.

Define a homomorphism

$$
\phi: G \longrightarrow H \times K
$$

by sending $g=h k$ to (h, k). Suppose that $h_{1} k_{1}=h_{2} k_{2}$. Then $h_{2}^{-1} h_{1}=$ $k_{2} k_{1}^{-1} \in H \cap K$. Thus $h_{2}^{-1} h_{1}=k_{2} k_{1}^{-1}=e$, the identity of G. Thus $h_{1}=h_{2}$ and $k_{1}=k_{2}$. Thus ϕ is well-defined.
The composition of ϕ with the two projection maps are the two identities, and these are both homomorphisms. By the universal property of a product, it follows that ϕ is a homomorphism.
ϕ is clearly surjective, and it is injective, as the kernel is clearly trivial. Thus ϕ is an isomorphism and G is isomorphic to $H \times K$. But $H \times K$ is clearly isomorphic to $H^{\prime} \times K^{\prime}$ and so we are done.
Challenge Problems (Just for fun)
4. (i) The direct sum is similar to the product, except that all the arrows go the other way.
The direct sum of two objects X and Y is an object Z together with two morphisms $i: X \longrightarrow Z$ and $j: Y \longrightarrow Z$ which are universal amongst all such morphisms:
Suppose that there are morphisms $f: X \longrightarrow W$ and $g: Y \longrightarrow W$. Then there is a unique morphism $Z \longrightarrow W$ which makes the following diagram commute,

(ii) The direct sum of two sets X and Y is the disjoint union $X \amalg Y$. The two functions i and j are the obvious inclusions.
(iii) If G and H are two abelian groups then the product $G \times H$ is also the direct sum. The two group homomorphisms i and j are

$$
\begin{array}{ccc}
i: G \longrightarrow G \times H & \text { given by } & g \longrightarrow(g, f) \\
j: H \longrightarrow G \times H & \text { given by } & h \longrightarrow(e, h) .
\end{array}
$$

