MODEL ANSWERS TO THE FIFTH HOMEWORK

1. Chapter 3, Section 5: 1 (a) Yes. Given a and $b \in \mathbb{Z}$,

$$
\begin{aligned}
\phi(a b) & =[a b] \\
& =[a][b] \\
& =\phi(a) \phi(b) .
\end{aligned}
$$

This map is clearly surjective but not injective. Indeed the kernel is easily seen to be $n \mathbb{Z}$.
(b) No. Suppose that G is not abelian and that $x y \neq y x$. Then $x^{-1} y^{-1} \neq y^{-1} x^{-1}$. On the other hand

$$
\begin{aligned}
\phi(x y) & =(x y)^{-1} \\
& =y^{-1} x^{-1} \\
& \neq x^{-1} y^{-1} \\
& =\phi(x) \phi(y),
\end{aligned}
$$

and one wrong certainly does not make a right.
(c) Yes. Suppose that x and y are in G. As G is abelian

$$
\begin{aligned}
\phi(x y) & =(x y)^{-1} \\
& =y^{-1} x^{-1} \\
& =x^{-1} y^{-1} \\
& =\phi(x) \phi(y) .
\end{aligned}
$$

Thus ϕ is a homomorphism. Suppose that $a \in G$. Then a is the inverse of $b=a^{-1}$, so that $\phi(b)=a$. Thus ϕ is surjective. Suppose that a is in the kernel of ϕ. Then $a^{-1}=e$ and so $a=e$. Thus the kernel of ϕ is trivial and ϕ is injective.
(d) Yes. ϕ is a homomorphism as the product of two positive numbers is positive, the product of two negative numbers is positive and the product of a negative and a positive number is negative.
This map is clearly surjective. The kernel consists of all positive real numbers. Thus ϕ is far from injective.
(e) Yes. Suppose that x and y are in G. Then

$$
\begin{aligned}
\phi(x y) & =(x y)^{n} \\
& =x^{n} y^{n} \\
& =\phi(x) \phi(y) .
\end{aligned}
$$

In general this map is neither injective nor surjective. For example, if $G=\mathbb{Z}$ and $n=2$ then the image of ϕ is $2 \mathbb{Z}$, and for example 1 is not in the image.
Now suppose that $G=\mathbb{Z}_{4}$ and $n=2$. Then $2[2]=[4]=[0]$, so that $[2]$ is in the kernel.
10. We need to check that $a H a^{-1}=H$ for all $a \in G$. If we pick $a \in H$ there is nothing to prove. Now $a=f^{i} g^{j}$. Conjugation by a is the same as conjugation by g^{j} followed by conjugation by f^{i}. So we only need to worry about conjugation by f. Now $g f=f g^{-1}$ so that $f g f^{-1}=g^{-1}$. Thus conjugation by f leaves H fixed, as it sends a generator to a generator.
12. Let $g \in G$. We want to show that $g Z g^{-1} \subset Z$. Pick $z \in Z$. Then z commutes with g, so that $g z g^{-1}=z g g^{-1}=z \in Z$. Thus Z is normal in G.
16. We need to show that $M N$ is non-empty and closed under products and inverses. $M N$ is non-empty as it contains $e=e e$.
Suppose that a_{1} and a_{2} belong to $M N$. Then we may find $m_{i} \in M$ and $n_{i} \in N$, such that $a_{i}=m_{i} n_{i}, i=1$ and 2 . As M is normal

$$
m=n_{1} m_{2} n_{1}^{-1} \in M \quad \text { so that } \quad n_{1} m_{2}=m n_{1}
$$

In this case

$$
\begin{aligned}
a_{1} a_{2} & =\left(m_{1} n_{1}\right)\left(m_{2} n_{2}\right) \\
& =m_{1}\left(n_{1} m_{2}\right) n_{2} \\
& =m_{1}\left(m n_{1}\right) n_{2} \\
& =\left(m_{1} m\right)\left(n_{1} n_{2}\right) \in M N
\end{aligned}
$$

as $m_{1} m \in M$ and $n_{1} n_{2} \in N$. Thus $M N$ is closed under products. Now suppose that $a=m n \in M N$. As M is normal

$$
l=n^{-1} m^{-1} n \in M \quad \text { so that } \quad n^{-1} m^{-1}=l n^{-1} \in M N
$$

Thus $M N$ is closed under inverses.
It follows that $M N$ is a subgroup of G.
Now suppose that $g \in G$ and $a=m n \in M N$. Then

$$
\begin{aligned}
g a g^{-1} & =g(m n) g^{-1} \\
& =\left(g m g^{-1}\right)\left(g n g^{-1}\right) \in M N,
\end{aligned}
$$

as both M and N are normal. Thus $M N$ is normal in G.
22. $H=\{e,(1,2)\}$. Then the left cosets of H are
(a)

$$
\begin{aligned}
H & =\{e,(1,2)\} \\
(1,3) H & =\{(1,3),(1,2,3)\} \\
(2,3) H & =\{(2,3),(1,3,2)\}
\end{aligned}
$$

and the right cosets are
(b)

$$
\begin{aligned}
H & =\{e,(1,2)\} \\
H(1,3) & =\{(1,3),(1,3,2)\} \\
H(2,3) & =\{(2,3),(1,2,3)\}
\end{aligned}
$$

(c) Clearly not every left coset is a right coset. For example $\{(1,3),(1,2,3)\}$ is a left coset, but not a right coset.
23. Let H be the subgroup generated by a. By assumption H is normal in G. It follows that $b a b^{-1} \in H$. Thus

$$
b a b^{-1}=a^{j}
$$

some j. But then

$$
b a=a^{j} b .
$$

26. (a) Let a and $b \in G$. Let $\sigma=\sigma_{a}, \tau=\sigma_{b}$ and $\rho=\sigma_{a b}$. We want to check that $\rho=\sigma \tau$. Both sides of this equation are functions from G to G, so we just need to check that they have the same effect on an element $g \in G$:

$$
\begin{aligned}
(\sigma \tau)(g) & =\sigma(\tau(g)) \\
& =\sigma\left(b g b^{-1}\right) \\
& =a\left(b g b^{-1}\right) a^{-1} \\
& =(a b) g\left(b^{-1} a^{-1}\right) \\
& =(a b) g(a b)^{-1} \\
& =\rho(g) .
\end{aligned}
$$

Thus ϕ is a group homomorphism.
(b) Suppose that $a \in Z$ and let $\sigma=\sigma_{a}=\phi(a)$. If $g \in G$ then

$$
\sigma(g)=a g a^{-1}=g a a^{-1}=g .
$$

Thus σ is the identity map and so $a \in \operatorname{Ker} \phi$.
Now suppose that $a \in \operatorname{Ker} \phi$. Then σ is the identity map and so

$$
g=\sigma(g)=a g a^{-1} .
$$

Multiplying on the right by a we get

$$
g a=a g,
$$

so that $a \in Z$. Thus $Z=\operatorname{Ker} \phi$.
28. Aut (G) is certainly non-empty, as it contains the identity. We check that $\operatorname{Aut}(G) \subset A(S)$ is closed under products and inverses.
Suppose that ϕ and $\psi \in \operatorname{Aut}(G)$. Let $\xi=\phi \circ \psi$. If g and $h \in G$ then

$$
\begin{aligned}
\xi(g h) & =(\phi \circ \psi)(g h) \\
& =\phi(\psi(g h)) \\
& =\phi(\psi(g) \psi(h)) \\
& =\phi(\psi(g)) \phi(\psi(h)) \\
& =(\phi \circ \psi)(g)(\phi \circ \psi)(h) \\
& =\xi(g) \xi(h) .
\end{aligned}
$$

Thus $\xi=\phi \circ \psi$ is a group homomorphism. Thus $\operatorname{Aut}(G)$ is closed under products.
Now let $\xi=\phi^{-1}$. If g and $h \in G$ then we can find g^{\prime} and h^{\prime} such that $g=\phi\left(g^{\prime}\right)$ and $h=\phi\left(h^{\prime}\right)$. It follows that

$$
\begin{aligned}
\xi(g h) & =\xi\left(\phi\left(g^{\prime}\right) \phi\left(h^{\prime}\right)\right) \\
& =\xi\left(\phi\left(g^{\prime} h^{\prime}\right)\right) \\
& =g^{\prime} h^{\prime} \\
& =\xi(g) \xi(h) .
\end{aligned}
$$

Thus $\xi=\phi^{-1}$ is a group homomorphism. Thus $\operatorname{Aut}(G)$ is closed under inverses.
37. Note that S_{3} is the group of permutations of three objects. So we want to find three things on which G acts. Pick any element h of G. Then the order of h divides the order of G. As the order of G is six, it follows that the order of h is one, two, three, or six. It cannot be six, as then G would be cyclic, whence abelian, and it can only be one if h is the identity.
Note that elements of order 3 come in pairs. If a is an element of order 3 then $a^{2}=a^{-1}$ also has order three and they are the two elements of $\langle a\rangle$ not equal to the identity. So the number of elements of order 3 is even. As there are five elements of G which don't have order one, it follows that at least one element a of G has order 2. If $H=\langle a\rangle$ then H is a subgroup of G of order two.
Let b be any other element of G. Consider the subgroup $K=\langle a, b\rangle$ of G generated by a and b. Then K has at least three elements, e, a and b and on the other hand the order of K is even by Lagrange as H is a subgroup of order 2 . Thus K has at least four elements. As the order of K divides the order of G the order of K is six, so that $G=\langle a, b\rangle$ is generated by a and b.

If $a b=b a$ it is not hard to check that G is abelian. As G is not abelian we must have $a b \neq b a$.
As H is a subgroup of G of order two, the number of left cosets of H in G (the index of H in G) is equal to three, by Lagrange. Let S be the set of left cosets. Define a map from G to $A(S)$,

$$
\phi: G \longrightarrow A(S)
$$

by sending g to $\sigma=\phi(g)$, where σ is the map,

$$
\sigma: S \longrightarrow S
$$

$\sigma(x H)=g x H$, that is, σ acts on the left cosets by left multiplication by g. If $x H=y H$ so that $y=x h$ for some $h \in H$ then

$$
g y=g(x h)=(g x) h,
$$

so that $(g y) H=(g x) H$ and σ is well-defined. σ is a bijection, as its inverse τ is given by left multiplication by g^{-1}. Now we check that ϕ is a homomorphism. Suppose that g_{1} and g_{2} are two elements of G. Set $\sigma_{i}=\phi\left(g_{i}\right)$ and let $\tau=\phi\left(g_{1} g_{2}\right)$. We need to check that $\tau=\sigma_{1} \sigma_{2}$. Pick a left coset $x H$. Then

$$
\begin{aligned}
\sigma_{1} \sigma_{2}(x H) & =\sigma_{1}\left(g_{2} x H\right) \\
& =g_{1} g_{2} x H \\
& =\tau(x H)
\end{aligned}
$$

Thus ϕ is a homomorphism.
We check that ϕ is injective. It suffices to prove that the kernel of ϕ is trivial. Pick $g \in \operatorname{Ker} \phi$. Then $\sigma=\phi(g)$ is the identity permutation, so that for every left coset $x H$,

$$
g x H=x H .
$$

Consider the left coset H. Then $g H=H$. It follows that $g \in H$, so that either $g=e$ or $g=a$. If $g=a$, then consider the left coset $b H$. We would then have $a b H=b H$, so that $a b=b h^{\prime}$, where $h^{\prime} \in H$. So $h^{\prime}=e$ or $h^{\prime}=a$. If $h^{\prime}=e$, then $a b=b$, and $a=e$, a contradiction. Otherwise $a b=b a$, a contradiction. Thus $g=e$, the kernel of ϕ is trivial and ϕ is injective. As $A(S)$ has order six and ϕ is injective, it follows that ϕ is a bijection. Thus G is isomorphic to S_{3}.

1. Chapter 3, Section 6: 1 There are two cosets. The first coset is $[1]=N$, the second is the coset containing -1 , which is the set of all negative real numbers.

$$
[1] \cdot[1]=[1],[1] \cdot[-1]=[-1] \cdot[1] \underset{5}{=}[-1] \text { and }[-1] \cdot[-1]=[1] .
$$

Chapter 3, Section 6: 2. Let $a \in \mathbb{R}$. Then $[a]=\{a,-a\}$. Thus any coset contains two elements, exactly one of which is a positive real number. Given a and b positive, $[a][b]=[a b]$. Define a homomorphism

$$
\phi: G \longrightarrow \mathbb{R}^{+}
$$

by sending a to $|a|$. The kernel is $N=\{1,-1\}$. By the first Isomorphism Theorem, $G / N \simeq \mathbb{R}^{+}$.
Chapter 3, Section 6: 3. Consider the canonical homomorphism

$$
u: G \longrightarrow G / N
$$

Then $M=u^{-1}(\bar{M})$. As the kernel of u is N, it follows that M contains N, as \bar{M} contains the identity of G / N.
To show that M is a subgroup of G, it suffices to prove that it is closed under products and inverses. Suppose that a and b are in M. Then $u(a)$ and $u(b)$ are in \bar{M}. Then $u(a b)=u(a) u(b) \in \bar{M}$ as \bar{M} is closed under products.
Thus $a b \in M$ and M is closed under products.
Similarly $u\left(a^{-1}\right)=u(a)^{-1} \in \bar{M}$ as \bar{M} is closed under inverses. Thus $a^{-1} \in M$ and M is closed under inverses.
Thus M is a subgroup of G.
Chapter 3, Section 6: 4. Suppose that \bar{M} is normal in G / N.
Pick $g \in G$. We want to prove $g M g^{-1} \subset M$. Pick $a \in M$. Then

$$
\phi\left(g a g^{-1}\right)=\phi(g) \phi(a) \phi(g)^{-1} .
$$

As \bar{M} is normal in G / N, it follows that $\phi(g) \phi(a) \phi(g)^{-1} \in \bar{M}$. But then gag ${ }^{-1} \in M$.
Challenge Problems (Just for fun)
43. Let G be a group of order nine. Let $g \in G$ be an element of G. Then the order of g divides the order of G. Thus the order of g is 1,3 or 9 . If G is cyclic then G is certainly abelian. Thus we may assume that there is no element of order nine. On the other hand the order of g is one if and only if $g=e$.
Thus we may assume that every element of G, other than the identity, has order three. Let $a \in G$ be an element of G, other than the identity. Let $H=\langle a\rangle$. Then H has order three. Let S be the set of left cosets of H in G. By Lagrange S has three elements. Let

$$
\phi: G \longrightarrow A(S) \simeq S_{3}
$$

be the corresponding homomorphism. Let G^{\prime} be the order of the image. Then the order of G^{\prime} is the number of left cosets of the kernel, which divides G by Lagrange. On the other hand the order of G^{\prime} divides the order of $A(S)$, again by Lagrange.

Thus G^{\prime} must have order three. It follows that the kernel of ϕ has order three. Thus the kernel of ϕ is H and H is a normal subgroup of G. Let $b \in G$ be any element of G that does not commute with a. Then $b a b^{-1}$ must be an element of H, as H is normal in G, and so $b a b^{-1}=a^{2}$. It follows that $b a=a^{2} b^{2}$. In this case

$$
\begin{aligned}
(b a)^{2} & =b a b a \\
& =a^{2} b^{2} b a \\
& =a^{2} a \\
& =e .
\end{aligned}
$$

Thus $b a$ is an element of order 2 , which is impossible as G has order 9 . 49. Let S be the set of left cosets of H in G. Define a map

$$
\phi: G \longrightarrow A(S)
$$

by sending $g \in G$ to the permutation $\sigma \in A(S)$, a map

$$
\sigma: S \longrightarrow S
$$

defined by the rule $\sigma(a H)=g a H$. Note that τ, which acts by multiplication on the left by g^{-1} is the inverse of σ, so that σ is indeed a permutation of S. It is easy to check, as before, that ϕ is a homomorphism.
Let N be the kernel of ϕ. Then N is normal in G. Suppose that $a \in N$ and let $\sigma=\phi(a)$. Then σ is the identity permutation of S. In particular $\sigma(H)=H$, so that $a H=H$. Thus $a \in H$ and so $N \subset H$.
Let n be the index of H, so that the image of G has at most n ! elements. In this case there are at most n ! left cosets of N in G, since each left coset of N in G is mapped to a different element of $A(S)$. Thus the index of N is at most $n!$.
52. Let A be the set of elements such that $\phi(a)=a^{-1}$. Pick an element $g \in G$ and let $B=g^{-1} A$. Then

$$
\begin{aligned}
|A \cap B| & =|A|+|B|-|A \cup B| \\
& >(3 / 4)|G|+(3 / 4)|G|-|G| \\
& =(1 / 2)|G| .
\end{aligned}
$$

Now pick $h \in A \cap B$ and suppose that $g \in A$. Then $g h \in A$. It follows that

$$
\begin{aligned}
h^{-1} g^{-1} & =(g h)^{-1} \\
& =\phi(g h) \\
& =\phi(g) \phi(h) \\
& =g^{-1} h^{-1} .
\end{aligned}
$$

Taking inverses, we see that g and h must commute. Let C be the centraliser of g. Then $A \cap B \subset C$, so that C contains more than half the elements of G. On the other hand, C is subgroup of G. By Lagrange the order of C divides the order of G. Thus $C=G$. Hence g is in the centre Z of G and so the centre Z of G contains at least $3 / 4$ of the elements of G. But then the centre of G must also equal G, as it is also a subgroup of G. Thus G is abelian.

