MODEL ANSWERS TO THE FIFTH HOMEWORK

1. Chapter 3, Section 5: 1 (a) Yes. Given a and b € Z,
¢(ab) = [ab]
= [a][0]
= ¢(a)o(b).
This map is clearly surjective but not injective. Indeed the kernel is
easily seen to be nZ.

(b) No. Suppose that G is not abelian and that zy # yz. Then
xly~t £ y~tz~l. On the other hand

o(xy) = (vy)~"
— oyl

7é J:flyfl

= ¢(z)9(y),

and one wrong certainly does not make a right.
(c) Yes. Suppose that z and y are in G. As G is abelian

p(y) = (xy)~"

y
— iy
= o(x)o(y).

Thus ¢ is a homomorphism. Suppose that a € G. Then a is the inverse
of b = a™!, so that ¢(b) = a. Thus ¢ is surjective. Suppose that a is
in the kernel of ¢. Then a=! = e and so a = e. Thus the kernel of ¢ is
trivial and ¢ is injective.

(d) Yes. ¢ is a homomorphism as the product of two positive numbers
is positive, the product of two negative numbers is positive and the
product of a negative and a positive number is negative.

This map is clearly surjective. The kernel consists of all positive real
numbers. Thus ¢ is far from injective.

(e) Yes. Suppose that z and y are in G. Then

o(zy) = (zy)"
= ¢(2)9(y).
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In general this map is neither injective nor surjective. For example, if
G = Z and n = 2 then the image of ¢ is 27Z, and for example 1 is not
in the image.

Now suppose that G = Z4 and n = 2. Then 2[2] = [4] = [0], so that [2]
is in the kernel.

10. We need to check that aHa™! = H for all a € G. If we pick a € H
there is nothing to prove. Now a = f¢’. Conjugation by a is the same
as conjugation by ¢’ followed by conjugation by f?. So we only need to
worry about conjugation by f. Now gf = fg~! so that fgf ! = g~ L.
Thus conjugation by f leaves H fixed, as it sends a generator to a
generator.

12. Let g € G. We want to show that gZ¢g~! C Z. Pick z € Z. Then
2 commutes with g, so that gzg~! = zgg™ = 2 € Z. Thus Z is normal
in G.

16. We need to show that M N is non-empty and closed under products
and inverses. M N is non-empty as it contains e = ee.

Suppose that a; and as belong to M N. Then we may find m; € M
and n; € N, such that a; = m;n;, i = 1 and 2. As M is normal

m = nlmgnfl eM so that n1My = Mn;.
In this case

araz = (m1n1)(m2n2)
= my(nima)ny
= my(mny)ny
= (mim)(ning) € MN

as mim € M and niny € N. Thus M N is closed under products.
Now suppose that a = mn € MN. As M is normal

l=n"‘mneM so that n“‘mt=In"te MN.

Thus M N is closed under inverses.

It follows that M N is a subgroup of G.

Now suppose that g € G and a = mn € M N. Then
gag~' = g(mn)g™

= (gmg~")(gng™") € MN,

as both M and N are normal. Thus M N is normal in G.

22. H ={e,(1,2)}. Then the left cosets of H are
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H={e (1,2)}
(1,3)H = {(1,3),(1,2,3)}
(2,3)H ={(2,3),(1,3,2)}
and the right cosets are
(b)
H={e (1,2)}
H(1,3) ={(1,3),(1,3,2)}
H(2,3) ={(2,3),(1,2,3)}.
(c) Clearly not every left coset is a right coset. For example {(1, 3), (1,2,3)}
is a left coset, but not a right coset.

23. Let H be the subgroup generated by a. By assumption H is normal
in G. It follows that bab~! € H. Thus

bab~! =

some j. But then

ba = a’b.
26. (a) Let a and b € G. Let 0 = 0,, T = 03, and p = 0. We want
to check that p = o7. Both sides of this equation are functions from
G to GG, so we just need to check that they have the same effect on an
element g € G-

Thus ¢ is a group homomorphism.
(b) Suppose that a € Z and let 0 = 0, = ¢(a). If g € G then

o(g) =aga™' = gaa ' = g.

Thus o is the identity map and so a € Ker ¢.
Now suppose that a € Ker ¢. Then o is the identity map and so

g=o0(g) = aga™".
Multiplying on the right by a we get
ga = ag,
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so that a € Z. Thus Z = Ker ¢.

28. Aut(G) is certainly non-empty, as it contains the identity. We
check that Aut(G) C A(S) is closed under products and inverses.
Suppose that ¢ and 1 € Aut(G). Let £ = o). If g and h € G then

£(gh) = (¢ oY) (gh)
= ¢(¥(gh))
—¢( (9)¥(h))
= o(¥(9))o((h))
= (¢po)(g)(@o)(h)
= £(9)¢(h).

Thus £ = ¢o1) is a group homomorphism. Thus Aut(G) is closed under
products.

Now let £ = ¢~ L. If g and h € G then we can find ¢’ and A’ such that
g=&(g) and h = ¢(h'). It follows that

£(gh) = &(o(g) o ()
=£&(o(g'n))
— glh/
=£&(g9)¢(h).

Thus € = ¢! is a group homomorphism. Thus Aut(G) is closed under
inverses.

37. Note that S5 is the group of permutations of three objects. So we
want to find three things on which G acts. Pick any element h of G.
Then the order of h divides the order of G. As the order of G is six, it
follows that the order of h is one, two, three, or six. It cannot be six,
as then G would be cyclic, whence abelian, and it can only be one if h
is the identity.

Note that elements of order 3 come in pairs. If a is an element of order
3 then a? = a~! also has order three and they are the two elements of
(a) not equal to the identity. So the number of elements of order 3 is
even. As there are five elements of G which don’t have order one, it
follows that at least one element a of G has order 2. If H = (a) then
H is a subgroup of G of order two.

Let b be any other element of G. Consider the subgroup K = (a,b) of
G generated by a and b. Then K has at least three elements, e, a and
b and on the other hand the order of K is even by Lagrange as H is a
subgroup of order 2. Thus K has at least four elements. As the order
of K divides the order of G the order of K is six, so that G = (a,b) is

generated by a and b.
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If ab = ba it is not hard to check that GG is abelian. As G is not abelian
we must have ab # ba.

As H is a subgroup of G of order two, the number of left cosets of H
in G (the index of H in G) is equal to three, by Lagrange. Let S be
the set of left cosets. Define a map from G to A(S),

¢: G— A(9)
by sending g to 0 = ¢(g), where o is the map,
c: 5 —S

o(xH) = gxH, that is, o acts on the left cosets by left multiplication
by g. If tH = yH so that y = xh for some h € H then

gy = g(wh) = (gz)h,

so that (gy)H = (gx)H and o is well-defined. o is a bijection, as its
inverse 7 is given by left multiplication by g=!. Now we check that ¢ is
a homomorphism. Suppose that g; and g, are two elements of G. Set
o; = ¢(g;) and let 7 = ¢(g192). We need to check that 7 = oy09. Pick
a left coset xH. Then

o109(xH) = 01(goxH)
= g192°H
=71(zH).

Thus ¢ is a homomorphism.
We check that ¢ is injective. It suffices to prove that the kernel of ¢ is
trivial. Pick g € Ker¢. Then o = ¢(g) is the identity permutation, so
that for every left coset *H,

grH = xH.

Consider the left coset H. Then gH = H. It follows that ¢ € H, so
that either ¢ = e or ¢ = a. If ¢ = a, then consider the left coset bH.
We would then have abH = bH, so that ab = bh/, where b’ € H. So
hW =eor h =a. If ¥ = e, then ab = b, and a = ¢, a contradiction.
Otherwise ab = ba, a contradiction. Thus g = e, the kernel of ¢ is
trivial and ¢ is injective. As A(S) has order six and ¢ is injective, it
follows that ¢ is a bijection.

Thus G is isomorphic to Ss.

1. Chapter 3, Section 6: 1 There are two cosets. The first coset is
[1] = N, the second is the coset containing —1, which is the set of all
negative real numbers.

][] =0} 4] - [=1] = [=1] - [1] - (1] and [-1] - [-1] = [1].



Chapter 3, Section 6: 2. Let a € R. Then [a] = {a,—a}. Thus any
coset contains two elements, exactly one of which is a positive real
number. Given a and b positive, [a|[b] = [ab]. Define a homomorphism

¢: G — RT,

by sending a to |a|. The kernel is N = {1, —1}. By the first Isomor-
phism Theorem, G/N ~ R*.
Chapter 3, Section 6: 3. Consider the canonical homomorphism

u: G — G/N.

Then M = u~'(M). As the kernel of u is N, it follows that M contains
N, as M contains the identity of G/N.

To show that M is a subgroup of G, it suffices to prove that it is closed
under products and inverses. Suppose that ¢ and b are in M. Then
u(a) and u(b) are in M. Then u(ab) = u(a)u(b) € M as M is closed
under products.

Thus ab € M and M is closed under products.

Similarly u(a™!) = u(a)™* € M as M is closed under inverses. Thus
a~! € M and M is closed under inverses.

Thus M is a subgroup of G.

Chapter 3, Section 6: 4. Suppose that M is normal in G/N.

Pick g € G. We want to prove gMg~' C M. Pick a € M. Then

d(gag™") = ¢(g)p(a)p(g) "

As M is normal in G/N, it follows that ¢(g)¢(a)é(g)~! € M. But then
gag~t e M.

Challenge Problems (Just for fun)

43. Let GG be a group of order nine. Let ¢ € G be an element of G.
Then the order of ¢ divides the order of G. Thus the order of g is 1, 3
or 9. If G is cyclic then G is certainly abelian. Thus we may assume
that there is no element of order nine. On the other hand the order of
g is one if and only if g = e.

Thus we may assume that every element of GG, other than the identity,
has order three. Let a € G be an element of GG, other than the identity.
Let H = (a). Then H has order three. Let S be the set of left cosets
of H in G. By Lagrange S has three elements. Let

¢: G — A(S) ~ S,

be the corresponding homomorphism. Let G’ be the order of the image.
Then the order of G’ is the number of left cosets of the kernel, which
divides G by Lagrange. On the other hand the order of G’ divides the
order of A(S), again by Lagrange.
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Thus G’ must have order three. It follows that the kernel of ¢ has order
three. Thus the kernel of ¢ is H and H is a normal subgroup of G.
Let b € GG be any element of G that does not commute with a. Then
bab~! must be an element of H, as H is normal in G, and so bab~! = a?.
It follows that ba = a?b®. In this case

(ba)? = baba

= a’b*ba

Thus ba is an element of order 2, which is impossible as GG has order 9.
49. Let S be the set of left cosets of H in G. Define a map

o: G — A(9)
by sending g € G to the permutation o € A(S), a map
c: 85 —S8

defined by the rule o(aH) = gaH. Note that 7, which acts by multi-
plication on the left by ¢! is the inverse of o, so that o is indeed a
permutation of S. It is easy to check, as before, that ¢ is a homomor-
phism.

Let N be the kernel of ¢. Then N is normal in G. Suppose that
a € N and let ¢ = ¢(a). Then o is the identity permutation of S. In
particular o(H) = H, so that aH = H. Thus a € H and so N C H.
Let n be the index of H, so that the image of G has at most n! elements.
In this case there are at most n! left cosets of N in G, since each left
coset of N in G is mapped to a different element of A(S). Thus the
index of N is at most n!.

52. Let A be the set of elements such that ¢(a) = a~!. Pick an element
g€ G andlet B=g A Then

|ANB|=|A|+|B|—|AU B|
> (3/4)|Gl + (3/4)|G| — |G
= (1/2)|G].
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Now pick h € AN B and suppose that g € A. Then gh € A. It follows
that

h™lg™ = (gh)™

= ¢(gh)

= ¢(g9)¢(h)

_ g_lh_l.
Taking inverses, we see that g and h must commute. Let C be the
centraliser of g. Then AN B C C, so that C' contains more than
half the elements of G. On the other hand, C' is subgroup of G. By
Lagrange the order of C' divides the order of G. Thus C' = G. Hence g
is in the centre Z of G and so the centre Z of G contains at least 3/4

of the elements of G. But then the centre of G must also equal G, as
it is also a subgroup of G. Thus G is abelian.



