MODEL ANSWERS TO THE FOURTH HOMEWORK

1. Chapter 2, Section 4: 13. First we write down the elements of U_{18}. These will be the left cosets, generated by integers coprime to 18 . Of the integers between 1 and 17 , those that are coprime to 18 are 1,5 , $7,11,13$ and 17.
Thus the elements of U_{18} are [1], [5], [7], [11], [13] and [17]. We calculate the order of these elements.
[1] is the identity, it has order one.
Consider [5].

$$
[5]^{2}=\left[5^{2}\right]=[25]=[7],
$$

as $25=7 \bmod 18$. In this case

$$
\left[5^{3}\right]=[5]\left[5^{2}\right]=[5][7]=[35]=[17],
$$

as $35=17 \bmod 18$.
We could keep computing. But at this point, we can be a little more sly. By Lagrange the order of $g=[5]$ divides the order of G. As G has order 6 , the order of $[5]$ is one of $1,2,3$, or 6 . As we have already seen that the order is not 1,2 or 3 , by a process of elimination, we know that [5] has order 6.
As $[17]=[5]^{3},[17]^{2}=[5]^{6}=[1]$. So [17] has order 2. Similarly, as $[7]=[5]^{2},[7]^{3}=[5]^{6}=[1]$. So the order of [7] divides 3. But then the order of [7] is three.
It remains to compute the order of [11] and [13]. Now one of these is the inverse of [5]. It must then have order six. The other would then be $[5]^{4}$ and so this element would have order dividing 3, and so its order would be 3 . Let us see which is which.

$$
[5][11]=[55]=[1]
$$

Thus [11] is the inverse of [5] and so it has order 6. Thus $[11]=[5]^{5}$. It follows that $[13]=[5]^{4}$ and so [13] has order 3.
Note that U_{18} is cyclic. In fact either [5] or [11] is a generator.
2. Chapter 2, Section 4: 13. First we write down the elements of U_{20}. Arguing as before, we get [1], [3], [7], [9], [11], [13], [17] and [19]. We compute the order of [3].

$$
\begin{gathered}
{[3]^{2}=[9] .} \\
{[3]^{3}=\underset{1}{[27]}=[7] .}
\end{gathered}
$$

$$
\left[3^{4}\right]=[3]\left[3^{3}\right]=[3][7]=[21]=[1] .
$$

So [3] and [7] are elements of order 4 and [9] is an element of order 2. Now note that the other elements are the additive inverses of the elements we just wrote down. Thus for example

$$
[17]^{2}=[-3]^{2}=[3]^{2}=[9] .
$$

So [17] and [13] have order 4 and [11] and [19] $=[-1]$ have order 2.
Thus U_{20} is not cyclic.

1. Chapter 2, Section 4: 24. Suppose not, that is suppose that there is a number a such that $a^{2}=-1 \bmod p$. Let $g=[a] \in U_{p}$. What is the order of g ?
Well

$$
g^{2}=[a]^{2}=\left[a^{2}\right]=[-1] \neq[1],
$$

and so

$$
g^{4}=\left(g^{2}\right)^{2}=[-1]^{2}=[1] .
$$

Thus g has order 4. But the order of any element, divides the order of the group, in this case $p-1=4 n+2$. But 4 does not divide $4 n+2$, a contradiction.
2. Chapter 3, Section 1: 1 (a)

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 5 & 2 & 1 & 3 & 6
\end{array}\right) .
$$

(b)

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 2 & 4 & 5
\end{array}\right)
$$

(c)

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 3 & 2 & 5
\end{array}\right)
$$

5. It suffices to find the cycle type and take the lowest common multiples of the individual lengths of a cycle decomposition.
(a)

$$
(1,4)(2,5,3)
$$

Order 6.
(b)

Order 3.
(c)

Order 2.
2. Chapter 3, Section 2: 1 As σ and τ are cycles, we may find integers $a_{1}, a_{2}, \ldots, a_{k}$ and $b_{1}, b_{2}, \ldots, b_{l}$ such that $\sigma=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ and $\tau=$ $\left(b_{1}, b_{2}, \ldots, b_{l}\right)$. To say that σ and τ are disjoint cycles is equivalent to saying that the two sets $S=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ and $T=\left\{b_{1}, b_{2}, \ldots, b_{l}\right\}$ are disjoint.
We want to prove that

$$
\sigma \tau=\tau \sigma .
$$

As both sides of this equation are permutations of the first n natural numbers, it suffices to show that they have the same effect on any integer $1 \leq j \leq n$.
If j is not in $S \cup T$, then there is nothing to prove; both sides clearly fix j. Otherwise $j \in S \cup T$. By symmetry we may asume $j \in S$. As S and T are disjoint, it follows that $j \notin T$.
As $j \in S, j=a_{i}$, some i. Then $\sigma\left(a_{i}\right)=a_{i+1}$, where we take $i+1$ modulo k (that is we adopt the convention that $k+1=1$). In this case $a_{i+1} \in S$ so $a_{i+1} \notin T$ as well. Thus both sides send $j=a_{i}$ to a_{i+1}. Thus both sides have the same effect on j, regardless of j and so

$$
\sigma \tau=\tau \sigma
$$

2. Chapter 3, Section 2: 2
(a)

$$
(1,3,4,2)(5,7,9)
$$

Order 12.
(b)

$$
(1,7)(2,6)(3,5)
$$

Order 2.
(c)

$$
(1,6)(2,5)(3,7)
$$

Order 2.
2. Chapter 3, Section 2:

3 (a)

$$
(2,4,1)(3,5,7,6)
$$

Order 12.
(f)

$$
(1,4,2,5,3)
$$

Order 5.
2. Chapter 3, Section 2: 8 (a)

$$
(2,1)(2,4)(3,6)(3,7)(3,5)
$$

$$
\begin{equation*}
\underset{3}{(1,3)(1,5)(1,2)(1,4)} \tag{f}
\end{equation*}
$$

3. Easy, the conjugate is $(2,7,5,3)(1,6,4)$. The order of σ is 12 and the order of τ is three.
4. There are quite a few possibilities for τ. One obvious one is

$$
\tau=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 1 & 2 & 5 & 4 & 7 & 6
\end{array}\right)
$$

Challenge Problems (Just for fun).
6. Chapter 2, Section 4: 36. Let $m=a^{n}-1$. Then $\phi(m)$ is the order of the group $G=U_{m}$. By Lagrange, it suffices to exhibit a subgroup H of G of order n. Set $g=[a]$ and let $H=\langle g\rangle$. Then the order of H is the order of g. Now

$$
g^{n}=[a]^{n}=\left[a^{n}\right]=[m+1]=[1] .
$$

So the order of g divides n. On the other hand $a^{i}<m$, for any $i<n$ so that

$$
g^{i}=\left[a^{i}\right] \neq[1] .
$$

Thus the order of g is n and so n divides m by Lagrange.
6. Chapter 2, Section 4: 37. Let G be a cyclic group of order n, and let $g \in G$ be a generator of G. Suppose $h \in G$. Then $h=g^{i}$, for some i.
First note that as

$$
e=h^{m}=\left(g^{i}\right)^{m}=g^{i m}
$$

it follows that $i m=j n$ is a multiple of n. Let $k=n / m$, so that $n=k m$. Cancelling m from both sides we get that $i=j k$ is a multiple of k.
Conversely if $i=j k$ is a multiple of k then $h^{m}=e$ and so the order of h divides m.
Suppose that the prime p divides both j and m. Then j is a multiple of $p k$ and so the order of h divides m / p.
It follows that h has order m if and only $i=j k$, where j is coprime to m.
The number of integers of the form $k j$, where j is coprime to m, is equal to the number of integers j coprime to m (and less than m) which is $\phi(m)$.
6. Chapter 2, Section 4: 38. Let G be a cyclic group of order n. Partition the elements of G into subsets A_{m}, where A_{m} consists of all
elements of order m. Then

$$
\begin{aligned}
n & =|G| \\
& =\left|\bigcup_{m \mid n} A_{m}\right| \\
& =\sum_{m \mid n}\left|A_{m}\right| \\
& =\sum_{m \mid n} \phi(m) .
\end{aligned}
$$

7. Let $H=\langle(1,2)(1,2,3, \ldots, n)\rangle$. We want to show that H is the whole of S_{n}. As the transpositions generate S_{n}, it suffices to prove that every transposition is in H.
Now the idea is that it is very hard to compute products in S_{n}, but it is easy to compute conjugates. So instead of using the fact that H is closed under products and inverses, let us use the fact that it is closed under taking conjugates (clear, as a conjugate is a product of elements of H and their inverses).
Since conjugation preserves cycle type, we start with the transposition $\sigma=(1,2)$ (in fact this is the only place to start).
To warm up, consider conjugating σ with $\tau=(1,2,3, \ldots, n)$. The conjugate is $(2,3)$. Thus H must contain $(2,3)$.
Given that H contains $(2,3)$ it must contain the conjugate of $(2,3)$ by τ, which is $(3,4)$ (or what comes to the same thing, H must contain the conjugate of $(1,2)$ by $\left.\tau^{2}\right)$.
Continuing in this way, it is clear that H (by an easy induction in fact) must contain every transposition of the form $(i, i+1)$ and of course the last one, $(n, 1)=(1, n)$.
From here, let us try to show that H contains every transposition of the form $(1, i)$. For example, to get $(1,3)$, start with $(1,2)$ and conjugate it by $(2,3)$. Suppose, by way of induction, that H contains $(1, i)$. Then H must contain the conjugate of $(1, i)$ by $(i, i+1)$ which is $(1, i+1)$. Thus by induction H contains every transposition of the form $(1, i)$.
Now we are almost home. Note that H must contain every transposition of the form $(2, j)$. Indeed $(2, j)$ is the conjugate of $(1, j)$ by the transposition (1, 2).
Now consider an aribtrary transposition (i, j). This is the conjugate of $(1,2)$ by the element $(1, i)(2, j)$. Thus H contains every transposition.
Aliter:
There is another way to show that the transpositions $(i, i+1), 1 \leq$ $i \leq n$ generate S_{n}. Consider a deck of cards in the order given by a
permutation $\tau \in S_{n}$. It is enough to show that we can put the deck of cards into the correct order, just using $(i, i+1), 1 \leq i \leq n$.
Suppose that we have rearranged the cards so that the first k cards are in the correct order. By induction it is enough to show we can put the $(k+1)$ th card into the $(k+1)$ th position.
Consider the $(k+1)$ th card. Suppose it occupies position l. If $l=k+1$ we are done. Now $l>k$ since the first k cards are in their correct position. Thus $l>k+1$. If we apply the transposition $(l-1, l)$ then we put the $(k+1)$ th card into the $(l-1)$ th position. Continuing in this way, we can continue swapping until it is in the $(k+1)$ th position. It follows that we can undo any permutation by applying a sequence of transpositions $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ of the form $(i, i+1)$,

$$
\tau^{-1}=\tau_{1} \tau_{2} \ldots \tau_{k}
$$

Taking inverses we express τ as product in the opposite order.
8. Look at the group $A(\mathbb{N})$ of permutations of the natural numbers. Now this is not countable, but consider the subgroup G consisting of all permutations that fix all but finitely many natural numbers. Note that $A(\mathbb{N})$ contains a nested sequence of copies of S_{n}, for all n, in an obvious way and that G is in fact the union of these finite subgroups. In particular G is countable, as it is the countable union of countable sets. Now suppose that $g_{1}, g_{2}, \ldots, g_{k}$ were a finite set of generators. Then in fact there is some n such that $g_{i} \in S_{n}$, for all i. As S_{n} is a subgroup of G, it follows that

$$
\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle \subset S_{n} \neq G
$$

a contradiction. Put differently, no finite subset generates G, since any finite subset will only permute finitely many natural numbers.

