
MODEL ANSWERS TO THE FOURTH HOMEWORK

1. Chapter 2, Section 4: 13. First we write down the elements of U18.
These will be the left cosets, generated by integers coprime to 18. Of
the integers between 1 and 17, those that are coprime to 18 are 1, 5,
7, 11, 13 and 17.
Thus the elements of U18 are [1], [5], [7], [11], [13] and [17]. We calculate
the order of these elements.
[1] is the identity, it has order one.
Consider [5].

[5]2 = [52] = [25] = [7],

as 25 = 7 mod 18. In this case

[53] = [5][52] = [5][7] = [35] = [17],

as 35 = 17 mod 18.
We could keep computing. But at this point, we can be a little more
sly. By Lagrange the order of g = [5] divides the order of G. As G has
order 6, the order of [5] is one of 1, 2, 3, or 6. As we have already seen
that the order is not 1, 2 or 3, by a process of elimination, we know
that [5] has order 6.
As [17] = [5]3, [17]2 = [5]6 = [1]. So [17] has order 2. Similarly, as
[7] = [5]2, [7]3 = [5]6 = [1]. So the order of [7] divides 3. But then the
order of [7] is three.
It remains to compute the order of [11] and [13]. Now one of these is
the inverse of [5]. It must then have order six. The other would then be
[5]4 and so this element would have order dividing 3, and so its order
would be 3. Let us see which is which.

[5][11] = [55] = [1]

Thus [11] is the inverse of [5] and so it has order 6. Thus [11] = [5]5.
It follows that [13] = [5]4 and so [13] has order 3.
Note that U18 is cyclic. In fact either [5] or [11] is a generator.
2. Chapter 2, Section 4: 13. First we write down the elements of U20.
Arguing as before, we get [1], [3], [7], [9], [11], [13], [17] and [19].
We compute the order of [3].

[3]2 = [9].

[3]3 = [27] = [7].
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[34] = [3][33] = [3][7] = [21] = [1].

So [3] and [7] are elements of order 4 and [9] is an element of order 2.
Now note that the other elements are the additive inverses of the ele-
ments we just wrote down. Thus for example

[17]2 = [−3]2 = [3]2 = [9].

So [17] and [13] have order 4 and [11] and [19] = [−1] have order 2.
Thus U20 is not cyclic.
1. Chapter 2, Section 4: 24. Suppose not, that is suppose that there
is a number a such that a2 = −1 mod p. Let g = [a] ∈ Up. What is
the order of g?
Well

g2 = [a]2 = [a2] = [−1] 6= [1],

and so
g4 = (g2)2 = [−1]2 = [1].

Thus g has order 4. But the order of any element, divides the order of
the group, in this case p− 1 = 4n+ 2. But 4 does not divide 4n+ 2, a
contradiction.
2. Chapter 3, Section 1: 1 (a)(

1 2 3 4 5 6
4 5 2 1 3 6

)
.

(b) (
1 2 3 4 5
3 1 2 4 5

)
.

(c) (
1 2 3 4 5
1 4 3 2 5

)
.

5. It suffices to find the cycle type and take the lowest common multi-
ples of the individual lengths of a cycle decomposition.
(a)

(1, 4)(2, 5, 3)

Order 6.
(b)

(1, 3, 2)

Order 3.
(c)

(2, 4)

Order 2.
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2. Chapter 3, Section 2: 1 As σ and τ are cycles, we may find integers
a1, a2, . . . , ak and b1, b2, . . . , bl such that σ = (a1, a2, . . . , ak) and τ =
(b1, b2, . . . , bl). To say that σ and τ are disjoint cycles is equivalent to
saying that the two sets S = {a1, a2, . . . , ak} and T = {b1, b2, . . . , bl}
are disjoint.
We want to prove that

στ = τσ.

As both sides of this equation are permutations of the first n natural
numbers, it suffices to show that they have the same effect on any
integer 1 ≤ j ≤ n.
If j is not in S ∪ T , then there is nothing to prove; both sides clearly
fix j. Otherwise j ∈ S ∪ T . By symmetry we may asume j ∈ S. As S
and T are disjoint, it follows that j /∈ T .
As j ∈ S, j = ai, some i. Then σ(ai) = ai+1, where we take i + 1
modulo k (that is we adopt the convention that k + 1 = 1). In this
case ai+1 ∈ S so ai+1 /∈ T as well. Thus both sides send j = ai to ai+1.
Thus both sides have the same effect on j, regardless of j and so

στ = τσ.

2. Chapter 3, Section 2: 2
(a)

(1, 3, 4, 2)(5, 7, 9)

Order 12.
(b)

(1, 7)(2, 6)(3, 5).

Order 2.
(c)

(1, 6)(2, 5)(3, 7)

Order 2.
2. Chapter 3, Section 2:
3 (a)

(2, 4, 1)(3, 5, 7, 6).

Order 12.
(f)

(1, 4, 2, 5, 3)

Order 5.
2. Chapter 3, Section 2: 8 (a)

(2, 1)(2, 4)(3, 6)(3, 7)(3, 5).

(f)
(1, 3)(1, 5)(1, 2)(1, 4).
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3. Easy, the conjugate is (2, 7, 5, 3)(1, 6, 4). The order of σ is 12 and
the order of τ is three.
4. There are quite a few possibilities for τ . One obvious one is

τ =

(
1 2 3 4 5 6 7
3 1 2 5 4 7 6

)
.

Challenge Problems (Just for fun).
6. Chapter 2, Section 4: 36. Let m = an − 1. Then φ(m) is the order
of the group G = Um. By Lagrange, it suffices to exhibit a subgroup
H of G of order n. Set g = [a] and let H = 〈g〉. Then the order of H
is the order of g. Now

gn = [a]n = [an] = [m+ 1] = [1].

So the order of g divides n. On the other hand ai < m, for any i < n
so that

gi = [ai] 6= [1].

Thus the order of g is n and so n divides m by Lagrange.
6. Chapter 2, Section 4: 37. Let G be a cyclic group of order n, and
let g ∈ G be a generator of G. Suppose h ∈ G. Then h = gi, for some
i.
First note that as

e = hm = (gi)m = gim

it follows that im = jn is a multiple of n. Let k = n/m, so that
n = km. Cancelling m from both sides we get that i = jk is a multiple
of k.
Conversely if i = jk is a multiple of k then hm = e and so the order of
h divides m.
Suppose that the prime p divides both j and m. Then j is a multiple
of pk and so the order of h divides m/p.
It follows that h has order m if and only i = jk, where j is coprime to
m.
The number of integers of the form kj, where j is coprime to m, is equal
to the number of integers j coprime to m (and less than m) which is
φ(m).
6. Chapter 2, Section 4: 38. Let G be a cyclic group of order n.
Partition the elements of G into subsets Am, where Am consists of all
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elements of order m. Then

n = |G|

= |
⋃
m|n

Am|

=
∑
m|n

|Am|

=
∑
m|n

φ(m).

7. Let H = 〈(1, 2)(1, 2, 3, . . . , n)〉. We want to show that H is the
whole of Sn. As the transpositions generate Sn, it suffices to prove
that every transposition is in H.
Now the idea is that it is very hard to compute products in Sn, but it
is easy to compute conjugates. So instead of using the fact that H is
closed under products and inverses, let us use the fact that it is closed
under taking conjugates (clear, as a conjugate is a product of elements
of H and their inverses).
Since conjugation preserves cycle type, we start with the transposition
σ = (1, 2) (in fact this is the only place to start).
To warm up, consider conjugating σ with τ = (1, 2, 3, . . . , n). The
conjugate is (2, 3). Thus H must contain (2, 3).
Given that H contains (2, 3) it must contain the conjugate of (2, 3) by
τ , which is (3, 4) (or what comes to the same thing, H must contain
the conjugate of (1, 2) by τ 2).
Continuing in this way, it is clear that H (by an easy induction in fact)
must contain every transposition of the form (i, i+1) and of course the
last one, (n, 1) = (1, n).
From here, let us try to show that H contains every transposition of the
form (1, i). For example, to get (1, 3), start with (1, 2) and conjugate it
by (2, 3). Suppose, by way of induction, that H contains (1, i). Then
H must contain the conjugate of (1, i) by (i, i + 1) which is (1, i + 1).
Thus by induction H contains every transposition of the form (1, i).
Now we are almost home. Note that H must contain every transposi-
tion of the form (2, j). Indeed (2, j) is the conjugate of (1, j) by the
transposition (1, 2).
Now consider an aribtrary transposition (i, j). This is the conjugate of
(1, 2) by the element (1, i)(2, j). Thus H contains every transposition.
Aliter:
There is another way to show that the transpositions (i, i + 1), 1 ≤
i ≤ n generate Sn. Consider a deck of cards in the order given by a
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permutation τ ∈ Sn. It is enough to show that we can put the deck of
cards into the correct order, just using (i, i+ 1), 1 ≤ i ≤ n.
Suppose that we have rearranged the cards so that the first k cards are
in the correct order. By induction it is enough to show we can put the
(k + 1)th card into the (k + 1)th position.
Consider the (k+1)th card. Suppose it occupies position l. If l = k+1
we are done. Now l > k since the first k cards are in their correct
position. Thus l > k + 1. If we apply the transposition (l − 1, l) then
we put the (k + 1)th card into the (l − 1)th position. Continuing in
this way, we can continue swapping until it is in the (k+ 1)th position.
It follows that we can undo any permutation by applying a sequence
of transpositions τ1, τ2, . . . , τk of the form (i, i+ 1),

τ−1 = τ1τ2 . . . τk.

Taking inverses we express τ as product in the opposite order.
8. Look at the group A(N) of permutations of the natural numbers.
Now this is not countable, but consider the subgroup G consisting of
all permutations that fix all but finitely many natural numbers. Note
that A(N) contains a nested sequence of copies of Sn, for all n, in an
obvious way and that G is in fact the union of these finite subgroups.
In particular G is countable, as it is the countable union of countable
sets. Now suppose that g1, g2, . . . , gk were a finite set of generators.
Then in fact there is some n such that gi ∈ Sn, for all i. As Sn is a
subgroup of G, it follows that

〈g1, g2, . . . , gk〉 ⊂ Sn 6= G,

a contradiction. Put differently, no finite subset generates G, since any
finite subset will only permute finitely many natural numbers.
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