MODEL ANSWERS TO THE THIRD HOMEWORK

1. False. Let $G=D_{3}, H=\left\{I, F_{1}\right\}$ and $K=\left\{I, F_{2}\right\}$. Then H and K are both subgroups of G but the union

$$
H \cup K=\left\{I, F_{1}, F_{2}\right\}
$$

is not.
2. Chapter 2, Section 4: 1. (b) Concentric circles with centre the origin.
(c) The real line union ∞, where the number $m \in \mathbb{R} \cup\{\infty\}$ represents the slope.
3. In the notation of the first question from homework 2, there are eight subgroups of D_{4}, up to symmetries.
$\{I\},\left\{I, R^{2}\right\},\left\{I, F_{1}\right\},\left\{I, D_{1}\right\},\left\{I, R, R^{2}, R^{3}\right\},\left\{I, D_{1}, D_{2}, R^{2}\right\},\left\{I, F_{1}, F_{2}, R^{2}\right\}, D_{4}$.
D_{4} has one left and one right coset, D_{4} itself. At the other extreme the left and right cosets of $\{I\}$ are the eight one element subsets of D_{4},

$$
\left\{\{I\},\{R\},\left\{R^{2}\right\},\left\{R^{3}\right\},\left\{D_{1}\right\},\left\{D_{2}\right\},\left\{F_{1}\right\},\left\{F_{2}\right\}\right\}
$$

The three subgroups of order 4 have one other coset (both left and right), the complement of the subgroup:

$$
\begin{aligned}
& \left\{\left\{I, R, R^{2}, R^{3}\right\},\left\{D_{1}, D_{2}, F_{1}, F_{2}\right\}\right\}, \\
& \left\{\left\{I, D_{1}, D_{2}, R^{2}\right\},\left\{R, R^{3}, F_{1}, F_{2}\right\}\right\}, \\
& \left\{\left\{I, F_{1}, F_{2}, R^{2}\right\},\left\{R, R^{3}, D_{1}, D_{2}\right\}\right\} .
\end{aligned}
$$

Now we attack the three subgroups of order 2 . We are looking for four subsets of order 2.
If we start with $H=\left\{I, R^{2}\right\}$ then we get the partition

$$
\left\{\left\{I, R^{2}\right\},\left\{R, R^{3}\right\},\left\{D_{1}, D_{2}\right\},\left\{F_{1}, F_{2}\right\}\right\},
$$

regardless of whether we look at left or right cosets.
If we start with $H=\left\{I, F_{1}\right\}$ then we get the two partitions
$\left\{\left\{I, F_{1}\right\},\left\{R, D_{1}\right\},\left\{R^{2}, F_{2}\right\},\left\{R^{3}, D_{2}\right\}\right\} \quad$ and $\quad\left\{\left\{I, F_{1}\right\},\left\{R, D_{2}\right\},\left\{R^{2}, F_{2}\right\},\left\{R^{3}, D_{1}\right\}\right\}$.
Finally, if we start with $H=\left\{I, D_{1}\right\}$ then we get the two partitions

$$
\left\{\left\{I, D_{1}\right\},\left\{R, F_{2}\right\},\left\{R^{2}, D_{2}\right\},\left\{R^{3}, F_{1}\right\}\right\} \quad \text { and } \quad\left\{\left\{I, D_{1}\right\},\left\{R, F_{1}\right\},\left\{R^{2}, D_{2}\right\},\left\{R^{3}, F_{2}\right\}\right\}
$$

4. Chapter 2, Section 4: 9.

$$
\begin{aligned}
& {[0]=0+H=\{[0],[4],[8],[12]\}} \\
& {[1]=1+H=\{[1],[5],[9],[13]\}} \\
& {[2]=2+H=\{[2],[6],[10],[14]\}} \\
& {[3]=3+H=\{[3],[7],[11],[15]\} .}
\end{aligned}
$$

4. Chapter 2, Section 4: 10. Four.
5. Chapter 2, Section 4: 12. False. Consider $G=D_{3}$ and $H=\{I, F\}$. Then

$$
R H=\left\{R, F_{3}\right\} \neq\left\{R^{2}, F_{2}\right\}=F_{2} H
$$

But

$$
H R=\left\{R, F_{2}\right\}=H F_{2}
$$

4. Chapter 2, Section 4: 16. For every i, there is a unique b_{i} which is the inverse of a_{i}. Thus the elements of G are both $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$. Now

$$
\begin{aligned}
x^{2} & =\left(a_{1} a_{2} \ldots a_{n}\right)\left(a_{1} a_{2} \ldots a_{n}\right) \\
& =\left(a_{1} a_{2} \ldots a_{n}\right)\left(b_{1} b_{2} \ldots b_{n}\right) \\
& =\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)\left(a_{3} b_{3}\right) \ldots\left(a_{n} b_{n}\right) \\
& =e^{n} \\
& =e,
\end{aligned}
$$

where we used the fact that G is abelian to rearrange these products. 4. Chapter 2, Section 4: 17. As $x^{2}=e$ the order of x is either 1 or 2 . If the order of G is odd it cannot be 2 by Lagrange. Thus the order of x is one. But then $x=e$.
4. Chapter 2, Section 4: 26. Define

$$
f: S \longrightarrow T
$$

by the rule

$$
f(H a)=a^{-1} H
$$

The key point is to check that f is well-defined. The problem is that if $b \in H a$, then $H a=H b$ and we have to check that $H a^{-1}=H b^{-1}$.
As $b \in H a$, we have $b=h a$. But then $b^{-1}=a^{-1} h^{-1}$. As H is a subgroup $h^{-1} \in H$. But then $b^{-1} \in a^{-1} H$ so that $a^{-1} H=b^{-1} H$ and f is well-defined.
To show that f is a bijection, we will show that it has an inverse. Define

$$
g: T \longrightarrow S
$$

by the rule

$$
g(a H) \underset{2}{=} H a^{-1}
$$

We have to show that g is well-defined. This follows, exactly as in the proof that f is well-defined. Then $g(f(a H))=g\left(H a^{-1}\right)=a H$ and similarly $f g$ is the identity. It follows that f is a bijection.
4. Chapter 2, Section 4: 27. Let $[a]_{L}$ denote the left-coset generated by a and let $[a]_{R}$ denote the right-coset generated by a. Suppose that $b \in[a]_{L}$. Then $[a]_{L}=[b]_{L}$ and so $a H=b H$. By assumption $H a=H b$. But then $[a]_{R}=[b]_{R}$ and so $b \in[a]_{R}$.
As b is an arbitrary element of $[a]_{L}$, it follows that $[a]_{L} \subset[a]_{R}$. In other words $a H \subset H a$. Multiplying both sets on the right by a^{-1} we get the inclusion

$$
a H a^{-1} \subset H
$$

Now this is valid for any $a \in G$, so that

$$
b H b^{-1} \subset H
$$

for all $b \in G$. Take $b=a^{-1}$. Then

$$
a^{-1} H a \subset H
$$

so that multipying on the left by a, we get

$$
H a \subset a H
$$

Thus $H a=a H$ and $a H a^{-1}=H$.
4. Chapter 2, Section 4: 29. We first prove that

$$
a b^{j} a^{-1}=b^{i j}
$$

We proceed by induction on j. The case $j=1$ follows by hypothesis. We have

$$
\begin{aligned}
a b^{j+1} a^{-1} & =a\left(b b^{j}\right) a^{-1} \\
& =\left(a b a^{-1}\right)\left(a b^{j} a^{-1}\right) \\
& =b^{i} b^{i j} \\
& =b^{i+i j} \\
& =b^{i(j+1)} .
\end{aligned}
$$

This completes the proof that

$$
a b^{j} a^{-1}=b^{i j}
$$

Now we prove that if

$$
a^{r} b a^{-r}=b^{i^{r}}
$$

We proceed by induction on r. The case $r=1$ follows by hypothesis. We have

$$
\begin{aligned}
a^{r+1} b a^{-r-1} & =a\left(a^{r} b a^{-r}\right) a^{-1} \\
& =a\left(b^{i^{r}}\right) a^{-1} \\
& =b^{i^{r} \cdot i} \\
& =b^{i r+1} .
\end{aligned}
$$

4. Chapter 2, Section 4: 30. We have

$$
\begin{aligned}
b & =a^{5} b a^{-5} \\
& =b^{2^{5}} \\
& =b^{32} .
\end{aligned}
$$

It follows that

$$
b^{31}=e .
$$

Thus the order of b divides 31. As 31 is prime this means the order is either 1 or 31 . But if the order is one then $b=e$, which we are supposing does not happen.
Thus the order of b is 31 .
5. Challenge Problems Chapter 2, Section 4: 43.

We have already seen that the set H of elements of G whose square is the identity is a subset of G. If $a \in G \backslash H$ then the inverse of a is also an element of $G \backslash H$, distinct from a. Thus we may assume that a_{1} and b_{1}, a_{2} and b_{2}, \ldots, a_{m} and b_{m} are inverses of each other, where $a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{m}$ are all the elements of $G \backslash H$.
In this case

$$
\begin{aligned}
a_{1} a_{2} \ldots a_{n-2} & =\left(a_{1} a_{2} \ldots a_{m}\right)\left(b_{1} b_{2} \ldots b_{m}\right) \\
& =\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)\left(a_{3} b_{3}\right) \ldots\left(a_{m} b_{m}\right) \\
& =e^{m} \\
& =e .
\end{aligned}
$$

Let y be the product of the elements of H. Then

$$
\begin{aligned}
x & =a_{1} a_{2} \ldots a_{n} \\
& =e y \\
& =y .
\end{aligned}
$$

Replacing G by H we may therefore assume that the square of every element of H is the identity.
(a) In this case $G=\{e, b\}$ and so

$$
x=b e=b .
$$

(b) We show that G contains a subgroup of index 2 .

Let H be any subgroup of G. Suppose that the index of H is not two. Then H has at least three left cosets. Pick a left coset $a H$ that does not contain either e or x. Consider the union K of H and $a H$.
I claim that K is a subgroup of G. It is certainly non-empty and is it certainly finite. We just need to prove it is closed under products.
Suppose that u and v belong to K. If u and v belong to H then the product belongs to H and so the product certainly belongs to K. Suppose that u belongs to H and v belongs to K. Then $v=a h$, where $h \in H$. But then the product

$$
\begin{aligned}
u v & =u(a h) \\
& =a(u h) \in a H
\end{aligned}
$$

belongs to $a H$, so that is certainly belongs to K. Finally suppose that u and v both belong to $a H$. Then $u=a h$ and $v=a k$, where h and $k \in H$. In this case

$$
\begin{aligned}
u v & =(a h)(a k) \\
& =a^{2}(h k) \\
& =h k \in H,
\end{aligned}
$$

belongs to H, so that it certainly belongs to K.
Thus K is a subgroup of G. It is then clear that any maximal (with respect to inclusion) proper subgroup H of G has index 2 .
Pick $a \notin H$. Then the left cosets of H are H and $a H$. As we are supposing that G has at least three elements, H has order m greater than one. As every element of H squares to the identity, m is even by Lagrange.
Let y be the product of the elements of H. Then the product of the elements of $a H$ is $a^{m} y=y$, as m is even and $a^{2}=e$. But then the product of the elements of G is

$$
x=y^{2}=e
$$

(c) As $x^{2}=e, x$ has order 1 or 2 . If n is odd then the order is not 2 . Thus the order of x is one and so $x=e$.
6. Challenge Problems Consider the rational numbers under addition. \mathbb{Q} is certainly countable. Suppose that $g_{1}, g_{2}, \ldots, g_{k}$ were a finite set of generators. Each g_{i} is a rational number, say of the form $\frac{a_{i}}{b_{i}}$. Now let b be the least common multiple of the $b_{1}, b_{2}, \ldots, b_{k}$. Then any element which is a finite sum or difference of the $g_{1}, g_{2}, \ldots, g_{k}$ will be of the form $\frac{a}{b}$, for some integer a. But most rationals are not of this form. Thus \mathbb{Q} is not finitely generated.

