MODEL ANSWERS TO THE THIRD HOMEWORK

1. False. Let G = D3, H ={[,F\} and K = {I, F5}. Then H and K
are both subgroups of G but the union

HUK ={I,F,F},

1s not.

2. Chapter 2, Section 4: 1. (b) Concentric circles with centre the
origin.

(c) The real line union oo, where the number m € RU {oo} represents
the slope.

3. In the notation of the first question from homework 2, there are
eight subgroups of Dy, up to symmetries.

{[}7 {[7R2}7 {Iv Fl}v {Ia Dl}a {]7R7 R27R3}7 {Ia DlaDQaR2}a {I7F17F27R2}7D4-

D, has one left and one right coset, D, itself. At the other extreme the
left and right cosets of {I} are the eight one element subsets of Dy,

{ {]}’ {R}7 {RZ}’ {Rg}a {Dl}a {DQ}v {Fl}v {FQ}}

The three subgroups of order 4 have one other coset (both left and
right), the complement of the subgroup:

{{-[7 Rv R27R3}7 {D17D27F1aF2} }7
{{-[7 D17D27R2}7 {Ra RgaFlaF2} }7
{{[7 F17F27R2}7 {Ra RgaDhDZ} }

Now we attack the three subgroups of order 2. We are looking for four
subsets of order 2.
If we start with H = {I, R?} then we get the partition

{ {Iv RQ}v {Ra RS}? {Dlv D2}7 {Fb FQ}}a

regardless of whether we look at left or right cosets.
If we start with H = {I, F}} then we get the two partitions

{{IvFl}v{Ra Dl}a{RQaFQ}a{RgaDQ}} and {{I7F1}7{R7D2}7{R27F2}7{R37D1}}-

Finally, if we start with H = {I, D1} then we get the two partitions

{{Iv Dl}:{Ra FQ}’{R2’D2}’{R3’F1}} and {{]7D1}7{R7FI}7{R27D2}7{R37F2}}'
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4. Chapter 2, Section 4: 9.

0] = 0+ H = {[0], [4], [8], [12]}
[1] =1+ H ={[1],[5], 9], [13]}
2 =2+ H = {[2],[6], [10], [14]}
8] =3+ H = {[3],[7], [11], [15]}

4. Chapter 2, Section 4: 10. Four.
4. Chapter 2, Section 4: 12. False. Consider G = D3 and H = {I, F'}.
Then
RH = {R,F3} # {R*, F,} = F,H.
But
HR={R,F>,} = HF,.
4. Chapter 2, Section 4: 16. For every i, there is a unique b; which is

the inverse of a;. Thus the elements of G are both ay,as,...,a, and
bl, bg, c. 7bn- Now

where we used the fact that G is abelian to rearrange these products.
4. Chapter 2, Section 4: 17. As x? = e the order of x is either 1 or 2.
If the order of GG is odd it cannot be 2 by Lagrange. Thus the order of
x is one. But then z = e.

4. Chapter 2, Section 4: 26. Define

f:8—T

by the rule

f(Ha) =a'H.
The key point is to check that f is well-defined. The problem is that
if b€ Ha, then Ha = Hb and we have to check that Ha=! = Hb™!.
As b € Ha, we have b = ha. But then b™' = a7 'h™!. As H is a
subgroup h™' € H. But then b™! € a7 'H so that a™'H = b"'H and f
is well-defined.
To show that f is a bijection, we will show that it has an inverse. Define

g:T — S
by the rule

g(aH) = Ha™.
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We have to show that g is well-defined. This follows, exactly as in the
proof that f is well-defined. Then g(f(aH)) = g(Ha™') = aH and
similarly fg is the identity. It follows that f is a bijection.

4. Chapter 2, Section 4: 27. Let [a]; denote the left-coset generated
by a and let [a]r denote the right-coset generated by a. Suppose that
b € [a]p. Then [a], = [b] and so aH = bH. By assumption Ha = Hb.
But then [a|g = [b]r and so b € [a]g.

As b is an arbitrary element of [a]y, it follows that [a];, C [a]g. In other
words aH C Ha. Multiplying both sets on the right by a=! we get the
inclusion

aHa™ C H.
Now this is valid for any a € G, so that

bHO' C H.
for all b € G. Take b = a!. Then
a'Ha C H,
so that multipying on the left by a, we get
Ha C aH.

Thus Ha = aH and aHa ' = H.
4. Chapter 2, Section 4: 29. We first prove that

abla=' = bV,

We proceed by induction on j. The case j = 1 follows by hypothesis.
We have

ab/ o™t = a(bb?)a?
= (aba ") (abla™t)

— bi—l—ij
— i+
This completes the proof that
aba™t = b,

Now we prove that if

a'ba”" =b".
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We proceed by induction on r. The case r = 1 follows by hypothesis.
We have
a"tha™"t = a(a"ba " )a "
= a(b")a™!
— bzrz
=
4. Chapter 2, Section 4: 30. We have
b=a’ba™®
—p?
= b2
It follows that
bl =e.
Thus the order of b divides 31. As 31 is prime this means the order
is either 1 or 31. But if the order is one then b = e, which we are
supposing does not happen.
Thus the order of b is 31.
5. Challenge Problems Chapter 2, Section 4: 43.
We have already seen that the set H of elements of G whose square
is the identity is a subset of G. If a € G\ H then the inverse of a is
also an element of G\ H, distinct from a. Thus we may assume that
a; and by, as and bs, ..., a,, and b,, are inverses of each other, where
a1,09, ..., 0y, b1, ba, ... by are all the elements of G\ H.
In this case

a1y . .. ap_o = (a1ag . .. ay)(biby ... by)
= (a1b1)(azbs)(aszbs) . .. (ambm)
=™
=e.
Let y be the product of the elements of H. Then
T =aias...a,
= ey
=y.
Replacing G by H we may therefore assume that the square of every

element of H is the identity.
(a) In this case G = {e, b} and so

x = be = b.
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(b) We show that G contains a subgroup of index 2.

Let H be any subgroup of G. Suppose that the index of H is not two.
Then H has at least three left cosets. Pick a left coset aH that does
not contain either e or x. Consider the union K of H and aH.

I claim that K is a subgroup of G. It is certainly non-empty and is it
certainly finite. We just need to prove it is closed under products.
Suppose that v and v belong to K. If uw and v belong to H then
the product belongs to H and so the product certainly belongs to K.
Suppose that u belongs to H and v belongs to K. Then v = ah, where
h € H. But then the product

uv = u(ah)
= a(uh) € aH

belongs to aH, so that is certainly belongs to K. Finally suppose that
u and v both belong to aH. Then u = ah and v = ak, where h and
k € H. In this case

uv = (ah)(ak)
= a*(hk)
— hk € H,

belongs to H, so that it certainly belongs to K.

Thus K is a subgroup of G. It is then clear that any maximal (with
respect to inclusion) proper subgroup H of G has index 2.

Pick a ¢ H. Then the left cosets of H are H and aH. As we are
supposing that G has at least three elements, H has order m greater
than one. As every element of H squares to the identity, m is even by
Lagrange.

Let y be the product of the elements of H. Then the product of the
elements of aH is a™y = y, as m is even and a® = e. But then the
product of the elements of G is

r=y*=e.

(c) As 2% = e, z has order 1 or 2. If n is odd then the order is not 2.
Thus the order of x is one and so = = e.

6. Challenge Problems Consider the rational numbers under addi-
tion. Q is certainly countable. Suppose that g1, gs, ..., gi were a finite
set of generators. Each g; is a rational number, say of the form Z—
Now let b be the least common multiple of the by, bs, ..., br. Then any
element which is a finite sum or difference of the gy, go, ..., gx Will be
of the form ¢, for some integer a. But most rationals are not of this

form. Thus Q is not finitely generated.
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