
MODEL ANSWERS TO THE THIRD HOMEWORK

1. False. Let G = D3, H = {I, F1} and K = {I, F2}. Then H and K
are both subgroups of G but the union

H ∪K = {I, F1, F2},

is not.
2. Chapter 2, Section 4: 1. (b) Concentric circles with centre the
origin.
(c) The real line union ∞, where the number m ∈ R∪ {∞} represents
the slope.
3. In the notation of the first question from homework 2, there are
eight subgroups of D4, up to symmetries.

{I}, {I, R2}, {I, F1}, {I,D1}, {I, R,R2, R3}, {I,D1, D2, R
2}, {I, F1, F2, R

2}, D4.

D4 has one left and one right coset, D4 itself. At the other extreme the
left and right cosets of {I} are the eight one element subsets of D4,

{ {I}, {R}, {R2}, {R3}, {D1}, {D2}, {F1}, {F2}}.

The three subgroups of order 4 have one other coset (both left and
right), the complement of the subgroup:

{ {I, R,R2, R3}, {D1, D2, F1, F2} },
{ {I,D1, D2, R

2}, {R,R3, F1, F2} },
{ {I, F1, F2, R

2}, {R,R3, D1, D2} }.

Now we attack the three subgroups of order 2. We are looking for four
subsets of order 2.
If we start with H = {I, R2} then we get the partition

{ {I, R2}, {R,R3}, {D1, D2}, {F1, F2}},

regardless of whether we look at left or right cosets.
If we start with H = {I, F1} then we get the two partitions

{ {I, F1}, {R,D1}, {R2, F2}, {R3, D2}} and { {I, F1}, {R,D2}, {R2, F2}, {R3, D1}}.

Finally, if we start with H = {I,D1} then we get the two partitions

{ {I,D1}, {R,F2}, {R2, D2}, {R3, F1}} and { {I,D1}, {R,F1}, {R2, D2}, {R3, F2}}.
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4. Chapter 2, Section 4: 9.

[0] = 0 + H = {[0], [4], [8], [12]}
[1] = 1 + H = {[1], [5], [9], [13]}
[2] = 2 + H = {[2], [6], [10], [14]}
[3] = 3 + H = {[3], [7], [11], [15]}.

4. Chapter 2, Section 4: 10. Four.
4. Chapter 2, Section 4: 12. False. Consider G = D3 and H = {I, F}.
Then

RH = {R,F3} 6= {R2, F2} = F2H.

But
HR = {R,F2} = HF2.

4. Chapter 2, Section 4: 16. For every i, there is a unique bi which is
the inverse of ai. Thus the elements of G are both a1, a2, . . . , an and
b1, b2, . . . , bn. Now

x2 = (a1a2 . . . an)(a1a2 . . . an)

= (a1a2 . . . an)(b1b2 . . . bn)

= (a1b1)(a2b2)(a3b3) . . . (anbn)

= en

= e,

where we used the fact that G is abelian to rearrange these products.
4. Chapter 2, Section 4: 17. As x2 = e the order of x is either 1 or 2.
If the order of G is odd it cannot be 2 by Lagrange. Thus the order of
x is one. But then x = e.
4. Chapter 2, Section 4: 26. Define

f : S −→ T

by the rule
f(Ha) = a−1H.

The key point is to check that f is well-defined. The problem is that
if b ∈ Ha, then Ha = Hb and we have to check that Ha−1 = Hb−1.
As b ∈ Ha, we have b = ha. But then b−1 = a−1h−1. As H is a
subgroup h−1 ∈ H. But then b−1 ∈ a−1H so that a−1H = b−1H and f
is well-defined.
To show that f is a bijection, we will show that it has an inverse. Define

g : T −→ S

by the rule
g(aH) = Ha−1.
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We have to show that g is well-defined. This follows, exactly as in the
proof that f is well-defined. Then g(f(aH)) = g(Ha−1) = aH and
similarly fg is the identity. It follows that f is a bijection.
4. Chapter 2, Section 4: 27. Let [a]L denote the left-coset generated
by a and let [a]R denote the right-coset generated by a. Suppose that
b ∈ [a]L. Then [a]L = [b]L and so aH = bH. By assumption Ha = Hb.
But then [a]R = [b]R and so b ∈ [a]R.
As b is an arbitrary element of [a]L, it follows that [a]L ⊂ [a]R. In other
words aH ⊂ Ha. Multiplying both sets on the right by a−1 we get the
inclusion

aHa−1 ⊂ H.

Now this is valid for any a ∈ G, so that

bHb−1 ⊂ H.

for all b ∈ G. Take b = a−1. Then

a−1Ha ⊂ H,

so that multipying on the left by a, we get

Ha ⊂ aH.

Thus Ha = aH and aHa−1 = H.
4. Chapter 2, Section 4: 29. We first prove that

abja−1 = bij.

We proceed by induction on j. The case j = 1 follows by hypothesis.
We have

abj+1a−1 = a(bbj)a−1

= (aba−1)(abja−1)

= bibij

= bi+ij

= bi(j+1).

This completes the proof that

abja−1 = bij.

Now we prove that if

arba−r = bi
r

.
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We proceed by induction on r. The case r = 1 follows by hypothesis.
We have

ar+1ba−r−1 = a(arba−r)a−1

= a(bi
r

)a−1

= bi
r·i

= bi
r+1

.

4. Chapter 2, Section 4: 30. We have

b = a5ba−5

= b2
5

= b32.

It follows that
b31 = e.

Thus the order of b divides 31. As 31 is prime this means the order
is either 1 or 31. But if the order is one then b = e, which we are
supposing does not happen.
Thus the order of b is 31.
5. Challenge Problems Chapter 2, Section 4: 43.
We have already seen that the set H of elements of G whose square
is the identity is a subset of G. If a ∈ G \ H then the inverse of a is
also an element of G \H, distinct from a. Thus we may assume that
a1 and b1, a2 and b2, . . . , am and bm are inverses of each other, where
a1, a2, . . . , am, b1, b2, . . . , bm are all the elements of G \H.
In this case

a1a2 . . . an−2 = (a1a2 . . . am)(b1b2 . . . bm)

= (a1b1)(a2b2)(a3b3) . . . (ambm)

= em

= e.

Let y be the product of the elements of H. Then

x = a1a2 . . . an

= ey

= y.

Replacing G by H we may therefore assume that the square of every
element of H is the identity.
(a) In this case G = {e, b} and so

x = be = b.
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(b) We show that G contains a subgroup of index 2.
Let H be any subgroup of G. Suppose that the index of H is not two.
Then H has at least three left cosets. Pick a left coset aH that does
not contain either e or x. Consider the union K of H and aH.
I claim that K is a subgroup of G. It is certainly non-empty and is it
certainly finite. We just need to prove it is closed under products.
Suppose that u and v belong to K. If u and v belong to H then
the product belongs to H and so the product certainly belongs to K.
Suppose that u belongs to H and v belongs to K. Then v = ah, where
h ∈ H. But then the product

uv = u(ah)

= a(uh) ∈ aH

belongs to aH, so that is certainly belongs to K. Finally suppose that
u and v both belong to aH. Then u = ah and v = ak, where h and
k ∈ H. In this case

uv = (ah)(ak)

= a2(hk)

= hk ∈ H,

belongs to H, so that it certainly belongs to K.
Thus K is a subgroup of G. It is then clear that any maximal (with
respect to inclusion) proper subgroup H of G has index 2.
Pick a /∈ H. Then the left cosets of H are H and aH. As we are
supposing that G has at least three elements, H has order m greater
than one. As every element of H squares to the identity, m is even by
Lagrange.
Let y be the product of the elements of H. Then the product of the
elements of aH is amy = y, as m is even and a2 = e. But then the
product of the elements of G is

x = y2 = e.

(c) As x2 = e, x has order 1 or 2. If n is odd then the order is not 2.
Thus the order of x is one and so x = e.
6. Challenge Problems Consider the rational numbers under addi-
tion. Q is certainly countable. Suppose that g1, g2, . . . , gk were a finite
set of generators. Each gi is a rational number, say of the form ai

bi
.

Now let b be the least common multiple of the b1, b2, . . . , bk. Then any
element which is a finite sum or difference of the g1, g2, . . . , gk will be
of the form a

b
, for some integer a. But most rationals are not of this

form. Thus Q is not finitely generated.
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