
MODEL ANSWERS TO THE SECOND HOMEWORK

1. Label the vertices of the square A, B, C, D, where we start at
the top left hand corner and we go around the square clockwise. In
particular A is opposite to C and B is opposite to D.
There are three obvious types of symmetries. There are rotations.
One obvious rotation R corresponds to rotation clockwise through π/2
radians. The others are R2, R3 and the identity I. They represent
rotation through π, 3π/2 and 2π (or zero).
There are two sorts of flips. One set of flips are diagonal flips. The
first D1 fixes the diagonal AC and switches B and D. The other D2

fixes the diagonal BD and switches A and C. The other possibility is
to look at the flip F1 which switches A and D and B and C and the
flip F2 which switches A and B and C and D.
I claim that this exhausts all possible symmetries. In fact any symme-
try is determined by its action on the fours vertices A, B, C and D.
Now there are 24 = 4! possible such permutations.
On the other hand any symmetry of a square must fix opposite cor-
ners. Thus once we have decided where to send A, for which there are
four possibilities, the position of C is determined, it is opposite to A.
There are then two possible positions for B. So there are at most eight
symmetries and we have listed all of them.
We start looking for subgroups. Two trivial examples are D4 and
{I}. A non-trivial example is afforded by the set of all rotations
{I, R,R2, R3}. Clearly closed under products and inverses. Note that
rotation through π radians R2 generates the subgroup {I, R2}.
Simliarly, since any flip is its own inverse, the following are all sub-
groups, {I, F1}, {I, F2}, {I,D1} and {I,D2}. Now try combining side
flips and diagonal flips. Now F1D1 = R3. So any subgroup that con-
tains F1 and D1 must contain R3 and hence all rotations. From there
it is easy to see we will get the whole of G. So we cannot combine side
flips with diagonal flips.
Now consider combining rotations and flips. Note that F1F2 = R2 and
D1D2 = R2 by direct computation. We then try to see if

{I, F1, F2, R
2}

is a subgroup. As this is finite, it suffices to check that it is closed under
products. We look at pairwise products. If one of the terms is I this is
clear. We already checked F1F2. It remains to check F1R

2 and F2R
2.
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Consider the equation F1F2 = R2. Multiplying by F1 on the left, and
using the fact that it is its own inverse, we get F2 = F1R

2. Similarly
all other products, of any two of F1, F2 and R2, gives the third. Thus

{I, F1, F2, R
2}

is a subgroup.
Similarly

{I,D1, D2, R
2}

is a subgroup.
2. Chapter 2, Section 2: 1. This is a little tricky. The hard thing is to
show that G contains an element e that acts as the identity.
Suppose that b ∈ G. Consider the equation

xb = b.

By assumption this has a solution, call it a. Then

ab = b.

Now suppose that c ∈ G. Consider the equation

bx = c.

Then this has a solution, say x = d, so that bd = c.
Start with the equation

ab = b multiply both sides by d

(ab)d = bd now use associativity

a(bd) = c and the fact that bd = c

ac = c.

So now we know that a is a left identity. As we can always solve the
equation

xb = a,

for any b ∈ G, it follows that G has left inverses. But then by question
28, of the previous hwk, G is a group.
On the other hand, we can argue that there must be a right identity
a′, using the argument above. Now consider the product a ∗ a′. As a
is a left identity, this is equal to a′. But as a′ is a right identity, this is
equal to a. Thus a = a′ and so a plays the role of an identity.
Now arguing as above, G must contain left and right inverses, for b.
Again, it is not hard to prove that a right inverse of b is also a left
inverse, given that b does have a left inverse. Thus G is a group.
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2. Chapter 2, Section 2: 2. One way to do this is to appeal to the First
Model Answers, qu 29. On the other hand, one can in fact reduce this
problem to the previous question. Given a ∈ G define a map

l : G −→ G

by the rule
l(g) = ag.

I claim that l is injective. Suppose that l(g) = l(h). By definition this
means ag = ah. But then g = h, by hypothesis. Thus l is injective.
As G is finite, it follows that l is surjective. But this means that for
every y in G, there is an x such that l(x) = y. By definition this means
ax = y.
Similarly we may define a map

r : G −→ G

by the rule
r(g) = ga.

By the same argument, using r instead of l, we can show that every
equation of the form xa = y has a solution in x, where y ∈ G.
Thus we have proved that the hypotheses of question 1 hold and we
may apply question 1.
3. Chapter 2, Section 3: 4. There are two ways to go about this.
The first is to adapt the proof of the fact that the centraliser Cg of an
element g ∈ G is a subgroup of G. This is straightforward.
The second is a little smarter. Note that Z(G) is, almost by definition,
the intersection of the centraliser’s Cg of all the elements of g ∈ G (see
question 5 below).
On the other hand it is proved in class that the intersection of subgroups
is a group.
Thus Z(G) is indeed a subgroup.
3. Chapter 2, Section 3: 5. Suppose that h ∈ Z(G). Let a ∈ G. Then

ha = ah,

as h ∈ Z(G). But then h ∈ Ca. As a is arbitrary,

h ∈
⋂
a∈G

Ca.

Thus Z(G) ⊂
⋂

a∈GCa.
Now suppose that h ∈

⋂
a∈GCa. Then h ∈ Ca, for every a ∈ G. But

then
ha = ah,

for all a ∈ G. By definition then h ∈ Z(G). Thus
⋂

a∈GCa ⊂ Z(G).
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3. Chapter 2, Section 3: 8. Note that e2 = e and so H is non-empty.
We need to check it is closed under products and inverses. Suppose
that a and b ∈ H. Then a2 = b2 = e. We have

(ab)2 = (ab)(ab)

= a2b2

= e2

= e,

where we used the fact that G is abelian to go from line one to line
two. Thus ab ∈ H and H is closed under products.
Now suppose that a ∈ H. Then a2 = e so that a−1 = a ∈ H. Thus H
is closed under inverses.
As H is closed under products and inverses, it is a subgroup.
3. Chapter 2, Section 3: 12. Let G be a cyclic group. Then there is an
element a ∈ G such that G = 〈a〉. Suppose that g and h ∈ G. Then
there are integers m and n such that g = am and h = an. But then

gh = aman

= am+n

= an+m

= anam = hg.

Thus G is abelian.
3. Chapter 2, Section 3: 19. Let H = AB. Note that

e = e · e ∈ AB = H

so that H is non-empty.
Therefore we just need to show that AB is closed under products and
inverses.
Suppose that h and k belong to AB. Then we may find a and c ∈ A
and b and d ∈ B such that

h = ab and k = cd.

We have

hk = (ab)(cd)

= a(bc)d

= a(cb)d

= (ac)(bd).

Now ac ∈ A and bd ∈ B as A and B are subgroups of G. Thus hk ∈ H
and H is closed under products.
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We also have

h−1 = (ab)−1

= b−1a−1

= a−1b−1.

Now a−1 ∈ A and b−1 ∈ B as A and B are subgroups of G. Thus
h−1 ∈ H and H is closed under inverses.
As H is closed under products and inverses, it is a subgroup of G.
3. Chapter 2, Section 3: 20. Obviously we need to start with a non-
abelian group. Let’s try G = D3.
Let A = {I, F1} and B = {I, F2}. Then AB has at most four elements,
the four ways to take an element from A and an element from B. But
AB contains F1 = F1 · I and F2 = I · F2. Thus the smallest subgroup
containing AB is the whole of D3, which has six elements.
Thus AB is not a subgroup of D3.
4. Challenge Problems Chapter 2, Section 3: 25. Let S = Z and let
X = N. Consider the function

f : Z −→ Z,

which sends x to x+ 1.
This is a bijection. Indeed, its inverse is the function

g : Z −→ Z,

which sends x to x− 1. Thus f ∈ A(S).
On the other hand f is clearly an element of T (X), since if x > 0 then
so is x+ 1.
But g is not an element of T (X). Indeed g(1) = 0 /∈ X. Thus T (X) is
not closed under taking inverses.
4. Challenge Problems Chapter 2, Section 3: 26. The right cosets
are precisely the equivalence classes of an appropriate relation (just as
in class). It follows that they must be disjoint.
Here is a direct proof. Suppose that g ∈ Ha∩Hb. Then g = h1a = h2b,
for some h1 and h2. Thus b = h−12 h1a. Suppose that k ∈ Hb. Then
k = hb = (hh−12 h1)a. As H is a subgroup hh−12 h1 ∈ H. Thus k ∈ Ha.
Thus Hb ⊂ Ha. By symmetry Ha ⊂ Hb. Thus Ha = Hb.
4. Challenge Problems Chapter 2, Section 3: 27. |Ha| = |H|. This
was proved in class.
Here is another proof. Suppose that the elements of |H| are h1, h2, . . . , hk,
so that k = |H|. Then the elements of Ha are h1a, h2a, . . . , hka. It
suffices to show that these elements are distinct. Suppose not. Then

hia = hja
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for i 6= j. But since we have a group, we can cancel (that is multiply
by a−1 on the right). Thus

hi = hj.
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