
MODEL ANSWERS TO THE FIRST HOMEWORK

1. Chapter 1, §1: 1. Suppose that a and b are elements of S. By rule
(1)

a ∗ b = a.

But by rule (2),

a ∗ b = b ∗ a.

Applying rule (1) we get a ∗ b = b ∗ a = b.
Thus a = a ∗ b = b. As a and b are arbitrary, S can have at most one
element.
1. Chapter 1 §1: 2. (a) Suppose that a and b are two integers and that
a ∗ b = b ∗ a.
Now a∗ b = a− b and b∗a = b−a so that then a− b = b−a. Applying
the standard rules of arithmetic, we get 2a = 2b and so a = b.
(b) Suppose that a, b and c are integers. Then

a ∗ (b ∗ c) = a ∗ (b− c) = a− (b− c) = a+ c− b.

On the other hand

(a ∗ b) ∗ c = (a− b) ∗ c = (a− b)− c = a− (b+ c).

Thus equality holds if and only if a+c−b = a−(b+c), that is, cancelling
c = −c so that c = 0. Thus ∗ is not associative. For example,

0 ∗ (0 ∗ 1) = 1

but

(0 ∗ 0) ∗ 1 = −1.

(c) Let a be an integer. Then

a ∗ 0 = a− 0 = a.

(d) Let a be an integer. Then

a ∗ a = a− a = 0.

2. Chapter 2, §1: (a). No, by the question above, this rule of multipli-
cation is not associative.

1



(b) No this is not a group. We consider the three axioms. Suppose
that a, b and c are three integers. Then

a ∗ (b ∗ c) = a ∗ (b+ c+ bc)

= a+ (b+ c+ bc) + a(b+ c+ bc)

= a+ b+ c+ bc+ ab+ ac+ abc.

Similarly

(a ∗ b) ∗ c = (a+ b+ ab) ∗ c
= a+ b+ ab+ c+ (a+ b+ ab)c

= a+ b+ c+ ab+ bc+ ac+ ac+ abc.

Since we get the same answer however we bracket the triple product,
this is an associative rule of multiplication.
I claim that zero acts as an identity. Let a be an integer. Then

a ∗ 0 = a+ 0 + a0 = a,

and
0 ∗ a = 0 + a+ 0a = a.

Thus 0 is an identity for ∗. By a result in class, this is the only possible
choice of identity.
Now suppose that a is an integer. An inverse of a would be an integer
x such that a ∗ x = 0. In other words x would be a solution to the
equation

a+ x+ ax = 0.

Solving for x gives

x = − a

a+ 1
.

The only problem is if a = −1. In other words if b is an inverse of −1
then −1 + b− b = 0, which is absurd. Thus we don’t have a group as
−1 is an element without an inverse.
(c). No, this is not a group. Addition of numbers is associative and
zero is the unique identity element. However the number one has no
inverse. Indeed if b is the inverse of 1, then

b+ 1 = 0.

In this case b = −1. But −1 is not a non-negative integer.
(d) We first have to check a slightly subtle thing. We need to check
that a∗b is never equal to −1. In other words we have to check that we
really have a well-defined rule of multiplication. Suppose that a and b
are rational numbers and that

a+ b+ ab = −1.
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Then

1 + a+ b+ ab = 0.

But

(1 + a)(1 + b) = 1 + a+ b+ ab

so that either 1 + a = 0 or 1 + b = 0. In other words either a = −1 or
b = −1. Thus we have a well-defined multiplication rule.
We proved in (b) that this rule of multiplication is associative and that
zero is an identity element. Clearly

a ∗ b = b ∗ a.
Let a be a rational number, not equal to −1. Let

b = − a

a+ 1
.

Note that we are allowed to divide through by 1 + a as a 6= −1.
Then

a ∗ b = a+ b+ ab = a− a

a+ 1
− a a

a+ 1
= a− a = 0.

Since b ∗ a = a ∗ b, b ∗ a = 0 as well. But then b acts as an inverse for
a. As a is arbitrary, every element has an inverse. Hence the rational
numbers excluding −1 form a group, with this law of multiplication.
(e) The set G consists of all rational numbers of the form a/5b where
5 does not divide a. Note that we don’t get a well-defined law of
multiplication. For example, x = 1/5 ∈ G and y = 4/5 ∈ G. But

x ∗ y =
1

5
+

4

5
= 1,

which is not an element of G.
(f) This is not a group. There cannot be an identity element. Suppose
not, suppose that e is an identity element and let a be an element of
G that is not equal to e. Then

e ∗ a = e 6= a,

which contradicts the basic property of an identity.
2. Chapter 2, §1, 2. The main thing to prove is that H is closed under
multiplication and taking inverses. Suppose that U and V are in H.
Then U = Ta,b and V = Tc,d, where a and b are equal to ±1. Now

U ∗ V = Ta,b ∗ Tc,d
= Tac,ad+b.

Now if a = ±1 and c = ±1 then clearly ac = ±1. Thus the product
U ∗V is in H and H is closed under multiplication. On the other hand
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the inverse of U = Ta,b is Ta−1,−a−1b. If a = ±1 then so is a−1. Thus H
is closed under taking inverses.
At this point we could of course invoke the Proposition proved in class
to conclude that H is a subgroup and so a group.
On the other hand we can argue as follows. This product is clearly
associative inH, since it is associative inG (or indeed since composition
of functions is associative).
The identity I = T1,0 is in H and is an identity in H. We already
checked that H contains inverses.
2. Chapter 2, §1: 5. The inverse of g is clearly rotation clockwise
through 90◦. This is represented by h(x, y) = (y,−x) = g3(x, y). We
check that h is an inverse of g formally:

(h ∗ g)(x, y) = h(g(x, y))

= h(−y, x)

= (x, y)

and

(g ∗ h)(x, y) = g(h(x, y))

= g(y,−x)

= (x, y).

Thus h is the inverse of g. We now check that g ∗ f = f ∗ h. We have

(g ∗ f)(x, y) = g(f(x, y))

= g(−x, y)

= (−y,−x).

On the other hand,

f ∗ h(x, y) = f(h(x, y))

= f(y,−x)

= (−y,−x).

Therefore g ∗ f = f ∗ h = f ∗ g−1 = f ∗ g3. It follows that

g ∗ f s = f s ∗ gs′

where s′ is 1 if s = 0 and s′ = 3 if s = 1. Therefore

gj ∗ f s = f s ∗ gj′

where j′ = j if s = 0 and j′ = −j if s = 1. Putting all of this together
we get

(f igj) ∗ (f sgt) = f i+sgj
′+t.

where j′ = j if s = 0 and j′ = −j if s = 1.
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We check the axioms for a group. By the formula above we have a well-
defined product. Multiplication is associative as it is just composition
of functions. The identity is f 0g0. The inverse of f igj is f−igj

′
where

j′ = j if i = 1 and j′ = −j if i = 0. Thus we have a group of order 8
which is clearly not abelian.
21. Suppose the elements of G are {e, a, b, c, d}. e is the identity. If G
is not abelian then we can find g and h such that gh 6= hg. If g = e
then gh = h = hg. Thus we may assume that g 6= e. By the same
token we may assume that h 6= e. If g = h then gh = g2 = hg. Thus
we may assume that g 6= h.
By symmetry we may therefore assume that g = a and h = b. By
assumption ab 6= ba. If ab = e then a is the inverse of a and so ba =
e = ab, a contradiction. If ab = a then b = e, another contradiction.
By the same token we may assume that the sets {ab, ba} and {a, b}
don’t intersect.
Thus by symmetry we may assume that ab = c. Since ba 6= c we may
assume that ba = d.
On the other hand a has an inverse. e is neither the inverse of a nor
the inverse of b. a and b are not inverses of each other. Suppose that
c is the inverse of a. Then

a2b = a(ab) = aa−1 = e.

Thus a2 is the inverse of b. It follows that

e = ba2 = (ba)a so that ba = c,

a contradiction.
The only remaining possibility is that a is its own inverse,

a−1 = a.

In this case multiplying both sides by a we get

a2 = aa−1 = e.

Consider the product aba. It is equal to an element of G.
We consider each cases, one by one.
Suppose it is equal to e. Then

aba = e.

Multiplying on the left by a we get

ba = a

Multiplying on the right by a we get

b = e,

a contradiction.
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Suppose it is equal to a. Then

aba = a

Multiplying on the left by a we get

ba = e,

so that b is the inverse of a, which is nonsense.
Suppose it is equal to c. Then

ca = c,

so that a = e, a contradiction.
Suppose it is equal to d. Then

ad = d,

so that a = e, a contradiction.
Finally, suppose it is equal to b. Then

aba = b.

Multiplying both sides on the right by a = a−1 we get

ab = ba,

so that a and b, a contradiction.
We have therefore shown that a does not have an inverse, a contradic-
tion.
Therefore G is abelian.
23. We may find c and d such that U = Tc,d. We have

Tac,cb+d = Tc,d ∗ Ta,b = U ∗ Ta,b = Ta,b ∗ U = Ta,b ∗ Tc,d = Tac,ad+b.

In other words we must have

Tac,cb+d = Tac,ad+b.

Since Tα,β is uniquely determined by α and β, we have equality if and
only if

bc+ d = ad+ b.

We view this as an equation for c and d, which is valid for any a and
b. If we put a = 1 then we get

bc+ d = d+ b so that b = bc.

If we put b = 1 then we conclude that c = 1. The original equation
now reduces to

b+ d = ad+ b so that d = ad.

If we put a = 2 then we see that d = 0.
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Thus the only element of G which commutes with everything is the
identity.
28. By assumption there is an element z ∈ G such that z ∗ y = e. We
compute the product z ∗ y ∗ x in two different ways (the product is
unambiguous by associativity).
On the one hand

z ∗ y ∗ x = (z ∗ y) ∗ x
= e ∗ x
= x.

On the other hand

z ∗ y ∗ x = z ∗ (y ∗ x)

= z ∗ e.
Thus x = z ∗ e. Let’s now compute x ∗ y:

x ∗ y = (z ∗ e) ∗ y
= z ∗ (e ∗ y)

= z ∗ y
= e.

Finally

x ∗ e = x ∗ (y ∗ x)

= (x ∗ y) ∗ x
= e ∗ x
= x.

Thus G is a group.
29. Define a function la : G −→ G by the rule la(g) = a ∗ g. Suppose
that la(b) = la(c). Then a ∗ b = a ∗ c and so b = c. But then la is an
injective function. As G is finite and la is injective it follows that la is
surjective. Thus la is bijective. In particular we may find e such that
la(e) = a. In this case a ∗ e = a.
Similarly we may define a function rb : G −→ G by the rule rb(c) = c∗b.
By symmetry rb is bijective. Thus we may find f such that f ∗ b = b.
Now

(a ∗ f) ∗ b = a ∗ (f ∗ b)
= a ∗ b.

As

(a ∗ f) ∗ b = a ∗ b
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we have

a ∗ f = a,

by rule (3). As
a ∗ f = a = a ∗ e,

we must have e = f by rule (2). As a and b are arbitrary, it follows
that e ∗ g = g ∗ e for any g ∈ G. Thus e plays the role of the identity.
As ra is surjective we may find an element b ∈ G such that b ∗ a = e.
At this point we are done by question 28 but here is a much easier
argument:

(a ∗ b) ∗ a = a ∗ (b ∗ a) by associativity

= a ∗ e
= a

= e ∗ a.
As

(a ∗ b) ∗ a = e ∗ a,
we must have a ∗ b = e by rule (3). Thus b is the inverse of a and G is
a group.
30. Let G = N and let a ∗ b = a + b. Then ∗ is an associative
binary operation. If a ∗ b = a ∗ c then a + b = a + c so that b = c.
a ∗ b = a+ b = b+ a = b ∗ a. But G is not a group, since inverses don’t
exist.
31. (a) Let f be the function f(x) = log x (we will adopt the convention
that log−x = log x). Then

f(a∗b) = f(ab) = log(ab) = log(a)+log(b) = f(a)+f(b) = f(a)#f(b),

by the usual rules for logs. Given y > 0 let x = 10y. Then log x = y,
so that f is surjective.
(b) Let f be any such function. We check that f(1) = f(−1) = 0. We
have

f(1) = f(1 · 1) = f(1) + f(1).

Hence f(1) = 0. On the other hand,

0 = f(1) = f(−1 · −1) = f(−1) + f(−1),

so that f(−1) = 0 as well. But then f is not injective.
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