MODEL ANSWERS TO THE FIRST HOMEWORK

1. Chapter 1, §1: 1. Suppose that a and b are elements of S. By rule
(1)
a*xb=a.

But by rule (2),

a*xb=>bxa.
Applying rule (1) we get axb=bx*xa = b.
Thus a = axb=>5b. As a and b are arbitrary, S can have at most one
element.
1. Chapter 1 §1: 2. (a) Suppose that a and b are two integers and that
axb=">bxa.
Now a*xb=a—0band bxa = b—a so that then a —b = b—a. Applying
the standard rules of arithmetic, we get 2a = 2b and so a = b.
(b) Suppose that a, b and ¢ are integers. Then

ax(bxc)=ax(b—c)=a—(b—c)=a+c—0».
On the other hand
(axb)xc=(a—b)xc=(a—b)—c=a—(b+c).

Thus equality holds if and only if a+c—b = a—(b+c), that is, cancelling

¢ = —c so that ¢ = 0. Thus * is not associative. For example,
0x(0x1)=1
but
(0%0)x1=-—1.

(c) Let a be an integer. Then
ax0=a—-0=a.

(d) Let a be an integer. Then
axa=a—a=0.

2. Chapter 2, §1: (a). No, by the question above, this rule of multipli-

cation is not associative.
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(b) No this is not a group. We consider the three axioms. Suppose
that a, b and c are three integers. Then

ax(bxc)=ax*(b+c+bc)
=a+ (b+c+bc)+a(b+ c+ bc)
=a+ b+ c+ bc+ ab+ ac+ abe.
Similarly
(axb)xc=(a+b+ab)*c
=a+b+ab+c+ (a+b+ab)c
=a+b+c+ab—+ bc+ ac+ ac+ abc.

Since we get the same answer however we bracket the triple product,
this is an associative rule of multiplication.
I claim that zero acts as an identity. Let a be an integer. Then

ax0=a4+0+4 a0 = aq,

and
Oxa=04+a+0a=a.

Thus 0 is an identity for *. By a result in class, this is the only possible
choice of identity.

Now suppose that a is an integer. An inverse of a would be an integer
x such that a x x = 0. In other words x would be a solution to the
equation

a+x+axr=0.
Solving for = gives
a
T a1
The only problem is if a = —1. In other words if b is an inverse of —1

then —1 + b — b = 0, which is absurd. Thus we don’t have a group as
—1 is an element without an inverse.

(c). No, this is not a group. Addition of numbers is associative and
zero is the unique identity element. However the number one has no
inverse. Indeed if b is the inverse of 1, then

b+1=0.

In this case b = —1. But —1 is not a non-negative integer.

(d) We first have to check a slightly subtle thing. We need to check
that ax0b is never equal to —1. In other words we have to check that we
really have a well-defined rule of multiplication. Suppose that a and b
are rational numbers and that

a+b+ab=—1.
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Then
l+a+b+ab=0.
But
(1+a)1+b)=14a+b+ab
so that either 1 +a =0 or 1 + b = 0. In other words either a = —1 or
b = —1. Thus we have a well-defined multiplication rule.

We proved in (b) that this rule of multiplication is associative and that
zero is an identity element. Clearly

axb=>bxa.
Let a be a rational number, not equal to —1. Let
a
a+1
Note that we are allowed to divide through by 1+ a as a # —1.
Then

a a
a+1 aa +1
Since bxa =axb, bxa =0 as well. But then b acts as an inverse for
a. As a is arbitrary, every element has an inverse. Hence the rational
numbers excluding —1 form a group, with this law of multiplication.
(e) The set G consists of all rational numbers of the form a/5b where
5 does not divide a. Note that we don’t get a well-defined law of
multiplication. For example, x =1/5 € G and y =4/5 € G. But
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axb=a+b+ab=a— a—a=0.

which is not an element of G.

(f) This is not a group. There cannot be an identity element. Suppose
not, suppose that e is an identity element and let a be an element of
G that is not equal to e. Then

exa=e#a,

which contradicts the basic property of an identity.

2. Chapter 2, §1, 2. The main thing to prove is that H is closed under
multiplication and taking inverses. Suppose that U and V are in H.
Then U =T, and V =T, 4, where a and b are equal to £1. Now

UxV =T, xT.4
= Llac,ad+b-

Now if a = 4+1 and ¢ = +1 then clearly ac = £1. Thus the product

U=xV isin H and H is closed under multiplication. On the other hand
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the inverse of U =T, is T,-1_4-15. If a = £1 then so is a™*. Thus H
is closed under taking inverses.
At this point we could of course invoke the Proposition proved in class
to conclude that H is a subgroup and so a group.
On the other hand we can argue as follows. This product is clearly
associative in H , since it is associative in G (or indeed since composition
of functions is associative).
The identity I = Tj is in H and is an identity in H. We already
checked that H contains inverses.
2. Chapter 2, §1: 5. The inverse of ¢ is clearly rotation clockwise
through 90°. This is represented by h(z,y) = (y, —x) = ¢*(z,y). We
check that h is an inverse of g formally:
(hxg)(z,y) = h(g(z,y))
= h(_y7 l‘)
= (37, y)
and
(g% h)(x,y) = g(h(z,y))
=9y, —x)
= (2,9).
Thus h is the inverse of g. We now check that g x f = f x h. We have
(9% /), y) = g(f(z,9))
=g(—z,y)
= (_y7 _I>‘
On the other hand,
fh(z,y) = f(h(z,y))

= (_ya —l’).
Therefore g f = fxh= f*xg ' = f x¢g> It follows that
g f*=fxg°

where s' is 1 if s =0 and s’ = 3 if s = 1. Therefore
g f =g
where j' = j if s =0 and j' = —j if s = 1. Putting all of this together
we get . ' '
(f'g")* (fg')=fTg" "
where j/ =jifs=0and j = —jif s =1.
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We check the axioms for a group. By the formula above we have a well-
defined product. Multiplication is associative as it is just composition
of functions. The identity is f°¢°. The inverse of fig? is f~'¢?" where
j=jifi=1and 7= —jif i = 0. Thus we have a group of order 8
which is clearly not abelian.
21. Suppose the elements of G are {e, a,b,c,d}. e is the identity. If G
is not abelian then we can find g and h such that gh # hg. If g =€
then gh = h = hg. Thus we may assume that g # e. By the same
token we may assume that h # e. If ¢ = h then gh = g> = hg. Thus
we may assume that g # h.
By symmetry we may therefore assume that ¢ = a and h = b. By
assumption ab # ba. If ab = e then a is the inverse of a and so ba =
e = ab, a contradiction. If ab = a then b = e, another contradiction.
By the same token we may assume that the sets {ab,ba} and {a,b}
don’t intersect.
Thus by symmetry we may assume that ab = ¢. Since ba # ¢ we may
assume that ba = d.
On the other hand @ has an inverse. e is neither the inverse of a nor
the inverse of b. a and b are not inverses of each other. Suppose that
c is the inverse of a. Then
a’b = a(ab) = aa™ =e.

Thus a? is the inverse of b. It follows that

e = ba* = (ba)a so that ba = c,

a contradiction.
The only remaining possibility is that a is its own inverse,
al =a.
In this case multiplying both sides by a we get
a* =aa ! =e.

Consider the product aba. It is equal to an element of G.
We consider each cases, one by one.
Suppose it is equal to e. Then

aba = e.
Multiplying on the left by a we get
ba =a
Multiplying on the right by a we get
b=e,

a contradiction.



Suppose it is equal to a. Then

aba = a
Multiplying on the left by a we get

ba = e,

so that b is the inverse of a, which is nonsense.
Suppose it is equal to ¢. Then

ca = c,

so that a = e, a contradiction.
Suppose it is equal to d. Then

ad = d,

so that a = e, a contradiction.
Finally, suppose it is equal to b. Then

aba = b.

Multiplying both sides on the right by a = a™*

ab = ba,

we get

so that a and b, a contradiction.

We have therefore shown that a does not have an inverse, a contradic-
tion.

Therefore G is abelian.

23. We may find ¢ and d such that U =T, 4. We have

Tac,cb+d = Tc,d * Ta,b =Ux* Ta,b = Ta,b *U = Ta,b * Tc,d = Tac,ad+b-
In other words we must have
Tac,cb—l—d - Tac,ad—l—b'
Since T, g is uniquely determined by a and 3, we have equality if and
only if
bc+d=ad+0b.
We view this as an equation for ¢ and d, which is valid for any a and
b. If we put @ = 1 then we get
bc+d=d+b so that = be.

If we put b = 1 then we conclude that ¢ = 1. The original equation
now reduces to

b+d=ad+b so that d = ad.

If we put a = 2 then we see that d = 0.
6



Thus the only element of G which commutes with everything is the
identity.

28. By assumption there is an element z € G such that z xy = e. We
compute the product z % y * = in two different ways (the product is
unambiguous by associativity).

On the one hand

Zxyxx = (2%y)*x
= €EeExT
= .
On the other hand
zxysxx=2zx%(y*x)
=zxe.
Thus x = z x e. Let’s now compute x * y:
rxy=(z%e)xy
=zx*(exy)
=Zz%y
=e.
Finally
rxe=1xx(y*xx)
= (xxy)*x
=exT
= x.
Thus G is a group.
29. Define a function l,: G — G by the rule [,(g) = a * g. Suppose
that [,(b) = l,(c). Then a*b = a*c and so b = c¢. But then [, is an
injective function. As G is finite and [, is injective it follows that [, is
surjective. Thus [, is bijective. In particular we may find e such that
lo(€) = a. In this case a x e = a.
Similarly we may define a function r,: G — G by the rule ry(c) = cxb.

By symmetry 7, is bijective. Thus we may find f such that f «b =b.
Now

(ax f)xb=ax(fx*Db)

=axb.

(ax f)xb=axb
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we have

ax [ =a,
by rule (3). As
axf=a=axe,
we must have e = f by rule (2). As a and b are arbitrary, it follows
that e x g = g x e for any g € G. Thus e plays the role of the identity.
As r, is surjective we may find an element b € G such that b xa = e.
At this point we are done by question 28 but here is a much easier
argument:
(axb)xa=ax*(bxa) by associativity

=axe

=a

=ex*a.
As

(axb)*xa=exa,

we must have a * b = e by rule (3). Thus b is the inverse of a and G is
a group.
30. Let G = N and let a xb = a + b. Then x is an associative
binary operation. If a xb = a % c then a + b = a + ¢ so that b = c.
axb=a+b=0b+a=>bxa. But G is not a group, since inverses don’t
exist.

31. (a) Let f be the function f(z) = logz (we will adopt the convention
that log —z = log x). Then

flaxb) = f(ab) = log(ab) = log(a)+log(b) = f(a)+ f(b) = fla)#[ (D),
by the usual rules for logs. Given y > 0 let z = 10Y. Then logz = v,
so that f is surjective.

(b) Let f be any such function. We check that f(1) = f(—1) =0. We

have
f) =f1-1) = f1)+ f(1).
Hence f(1) = 0. On the other hand,

0=f(1)=f(=1-=1) = f(=1) + f(-1),
so that f(—1) = 0 as well. But then f is not injective.



