MODEL ANSWERS TO THE FIRST HOMEWORK

1. Chapter 1, $\S 1: 1$. Suppose that a and b are elements of S. By rule (1)

$$
a * b=a .
$$

But by rule (2),

$$
a * b=b * a .
$$

Applying rule (1) we get $a * b=b * a=b$.
Thus $a=a * b=b$. As a and b are arbitrary, S can have at most one element.

1. Chapter 1 §1: 2. (a) Suppose that a and b are two integers and that $a * b=b * a$.
Now $a * b=a-b$ and $b * a=b-a$ so that then $a-b=b-a$. Applying the standard rules of arithmetic, we get $2 a=2 b$ and so $a=b$.
(b) Suppose that a, b and c are integers. Then

$$
a *(b * c)=a *(b-c)=a-(b-c)=a+c-b .
$$

On the other hand

$$
(a * b) * c=(a-b) * c=(a-b)-c=a-(b+c) .
$$

Thus equality holds if and only if $a+c-b=a-(b+c)$, that is, cancelling $c=-c$ so that $c=0$. Thus $*$ is not associative. For example,

$$
0 *(0 * 1)=1
$$

but

$$
(0 * 0) * 1=-1 .
$$

(c) Let a be an integer. Then

$$
a * 0=a-0=a .
$$

(d) Let a be an integer. Then

$$
a * a=a-a=0 .
$$

2. Chapter 2, §1: (a). No, by the question above, this rule of multiplication is not associative.
(b) No this is not a group. We consider the three axioms. Suppose that a, b and c are three integers. Then

$$
\begin{aligned}
a *(b * c) & =a *(b+c+b c) \\
& =a+(b+c+b c)+a(b+c+b c) \\
& =a+b+c+b c+a b+a c+a b c .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
(a * b) * c & =(a+b+a b) * c \\
& =a+b+a b+c+(a+b+a b) c \\
& =a+b+c+a b+b c+a c+a c+a b c .
\end{aligned}
$$

Since we get the same answer however we bracket the triple product, this is an associative rule of multiplication.
I claim that zero acts as an identity. Let a be an integer. Then

$$
a * 0=a+0+a 0=a,
$$

and

$$
0 * a=0+a+0 a=a .
$$

Thus 0 is an identity for $*$. By a result in class, this is the only possible choice of identity.
Now suppose that a is an integer. An inverse of a would be an integer x such that $a * x=0$. In other words x would be a solution to the equation

$$
a+x+a x=0 .
$$

Solving for x gives

$$
x=-\frac{a}{a+1} .
$$

The only problem is if $a=-1$. In other words if b is an inverse of -1 then $-1+b-b=0$, which is absurd. Thus we don't have a group as -1 is an element without an inverse.
(c). No, this is not a group. Addition of numbers is associative and zero is the unique identity element. However the number one has no inverse. Indeed if b is the inverse of 1 , then

$$
b+1=0 .
$$

In this case $b=-1$. But -1 is not a non-negative integer.
(d) We first have to check a slightly subtle thing. We need to check that $a * b$ is never equal to -1 . In other words we have to check that we really have a well-defined rule of multiplication. Suppose that a and b are rational numbers and that

$$
a+b+a b=-1
$$

Then

$$
1+a+b+a b=0
$$

But

$$
(1+a)(1+b)=1+a+b+a b
$$

so that either $1+a=0$ or $1+b=0$. In other words either $a=-1$ or $b=-1$. Thus we have a well-defined multiplication rule.
We proved in (b) that this rule of multiplication is associative and that zero is an identity element. Clearly

$$
a * b=b * a .
$$

Let a be a rational number, not equal to -1 . Let

$$
b=-\frac{a}{a+1} .
$$

Note that we are allowed to divide through by $1+a$ as $a \neq-1$.
Then

$$
a * b=a+b+a b=a-\frac{a}{a+1}-a \frac{a}{a+1}=a-a=0 .
$$

Since $b * a=a * b, b * a=0$ as well. But then b acts as an inverse for a. As a is arbitrary, every element has an inverse. Hence the rational numbers excluding -1 form a group, with this law of multiplication.
(e) The set G consists of all rational numbers of the form $a / 5 b$ where 5 does not divide a. Note that we don't get a well-defined law of multiplication. For example, $x=1 / 5 \in G$ and $y=4 / 5 \in G$. But

$$
x * y=\frac{1}{5}+\frac{4}{5}=1
$$

which is not an element of G.
(f) This is not a group. There cannot be an identity element. Suppose not, suppose that e is an identity element and let a be an element of G that is not equal to e. Then

$$
e * a=e \neq a
$$

which contradicts the basic property of an identity.
2. Chapter $2, \S 1,2$. The main thing to prove is that H is closed under multiplication and taking inverses. Suppose that U and V are in H. Then $U=T_{a, b}$ and $V=T_{c, d}$, where a and b are equal to ± 1. Now

$$
\begin{aligned}
U * V & =T_{a, b} * T_{c, d} \\
& =T_{a c, a d+b} .
\end{aligned}
$$

Now if $a= \pm 1$ and $c= \pm 1$ then clearly $a c= \pm 1$. Thus the product $U * V$ is in H and H is closed under multiplication. On the other hand
the inverse of $U=T_{a, b}$ is $T_{a^{-1},-a^{-1} b}$. If $a= \pm 1$ then so is a^{-1}. Thus H is closed under taking inverses.
At this point we could of course invoke the Proposition proved in class to conclude that H is a subgroup and so a group.
On the other hand we can argue as follows. This product is clearly associative in H, since it is associative in G (or indeed since composition of functions is associative).
The identity $I=T_{1,0}$ is in H and is an identity in H. We already checked that H contains inverses.
2. Chapter 2, §1: 5. The inverse of g is clearly rotation clockwise through 90°. This is represented by $h(x, y)=(y,-x)=g^{3}(x, y)$. We check that h is an inverse of g formally:

$$
\begin{aligned}
(h * g)(x, y) & =h(g(x, y)) \\
& =h(-y, x) \\
& =(x, y)
\end{aligned}
$$

and

$$
\begin{aligned}
(g * h)(x, y) & =g(h(x, y)) \\
& =g(y,-x) \\
& =(x, y) .
\end{aligned}
$$

Thus h is the inverse of g. We now check that $g * f=f * h$. We have

$$
\begin{aligned}
(g * f)(x, y) & =g(f(x, y)) \\
& =g(-x, y) \\
& =(-y,-x)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
f * h(x, y) & =f(h(x, y)) \\
& =f(y,-x) \\
& =(-y,-x) .
\end{aligned}
$$

Therefore $g * f=f * h=f * g^{-1}=f * g^{3}$. It follows that

$$
g * f^{s}=f^{s} * g^{s^{\prime}}
$$

where s^{\prime} is 1 if $s=0$ and $s^{\prime}=3$ if $s=1$. Therefore

$$
g^{j} * f^{s}=f^{s} * g^{j^{\prime}}
$$

where $j^{\prime}=j$ if $s=0$ and $j^{\prime}=-j$ if $s=1$. Putting all of this together we get

$$
\left(f^{i} g^{j}\right) *\left(f^{s} g^{t}\right)=f^{i+s} g^{j^{\prime}+t}
$$

where $j^{\prime}=j$ if $s=0$ and $j^{\prime}=-j$ if $s=1$.

We check the axioms for a group. By the formula above we have a welldefined product. Multiplication is associative as it is just composition of functions. The identity is $f^{0} g^{0}$. The inverse of $f^{i} g^{j}$ is $f^{-i} g^{j^{\prime}}$ where $j^{\prime}=j$ if $i=1$ and $j^{\prime}=-j$ if $i=0$. Thus we have a group of order 8 which is clearly not abelian.
21. Suppose the elements of G are $\{e, a, b, c, d\}$. e is the identity. If G is not abelian then we can find g and h such that $g h \neq h g$. If $g=e$ then $g h=h=h g$. Thus we may assume that $g \neq e$. By the same token we may assume that $h \neq e$. If $g=h$ then $g h=g^{2}=h g$. Thus we may assume that $g \neq h$.
By symmetry we may therefore assume that $g=a$ and $h=b$. By assumption $a b \neq b a$. If $a b=e$ then a is the inverse of a and so $b a=$ $e=a b$, a contradiction. If $a b=a$ then $b=e$, another contradiction. By the same token we may assume that the sets $\{a b, b a\}$ and $\{a, b\}$ don't intersect.
Thus by symmetry we may assume that $a b=c$. Since $b a \neq c$ we may assume that $b a=d$.
On the other hand a has an inverse. e is neither the inverse of a nor the inverse of $b . a$ and b are not inverses of each other. Suppose that c is the inverse of a. Then

$$
a^{2} b=a(a b)=a a^{-1}=e .
$$

Thus a^{2} is the inverse of b. It follows that

$$
e=b a^{2}=(b a) a \quad \text { so that } \quad b a=c,
$$

a contradiction.
The only remaining possibility is that a is its own inverse,

$$
a^{-1}=a
$$

In this case multiplying both sides by a we get

$$
a^{2}=a a^{-1}=e .
$$

Consider the product $a b a$. It is equal to an element of G.
We consider each cases, one by one.
Suppose it is equal to e. Then

$$
a b a=e .
$$

Multiplying on the left by a we get

$$
b a=a
$$

Multiplying on the right by a we get

$$
b=e
$$

a contradiction.

Suppose it is equal to a. Then

$$
a b a=a
$$

Multiplying on the left by a we get

$$
b a=e,
$$

so that b is the inverse of a, which is nonsense.
Suppose it is equal to c. Then

$$
c a=c,
$$

so that $a=e$, a contradiction.
Suppose it is equal to d. Then

$$
a d=d,
$$

so that $a=e$, a contradiction.
Finally, suppose it is equal to b. Then

$$
a b a=b .
$$

Multiplying both sides on the right by $a=a^{-1}$ we get

$$
a b=b a,
$$

so that a and b, a contradiction.
We have therefore shown that a does not have an inverse, a contradiction.
Therefore G is abelian.
23. We may find c and d such that $U=T_{c, d}$. We have

$$
T_{a c, c b+d}=T_{c, d} * T_{a, b}=U * T_{a, b}=T_{a, b} * U=T_{a, b} * T_{c, d}=T_{a c, a d+b} .
$$

In other words we must have

$$
T_{a c, c b+d}=T_{a c, a d+b}
$$

Since $T_{\alpha, \beta}$ is uniquely determined by α and β, we have equality if and only if

$$
b c+d=a d+b .
$$

We view this as an equation for c and d, which is valid for any a and b. If we put $a=1$ then we get

$$
b c+d=d+b \quad \text { so that } \quad b=b c .
$$

If we put $b=1$ then we conclude that $c=1$. The original equation now reduces to

$$
b+d=a d+b \quad \text { so that } \quad d=a d .
$$

If we put $a=2$ then we see that $d=0$.

Thus the only element of G which commutes with everything is the identity.
28. By assumption there is an element $z \in G$ such that $z * y=e$. We compute the product $z * y * x$ in two different ways (the product is unambiguous by associativity).
On the one hand

$$
\begin{aligned}
z * y * x & =(z * y) * x \\
& =e * x \\
& =x
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
z * y * x & =z *(y * x) \\
& =z * e
\end{aligned}
$$

Thus $x=z * e$. Let's now compute $x * y$:

$$
\begin{aligned}
x * y & =(z * e) * y \\
& =z *(e * y) \\
& =z * y \\
& =e
\end{aligned}
$$

Finally

$$
\begin{aligned}
x * e & =x *(y * x) \\
& =(x * y) * x \\
& =e * x \\
& =x
\end{aligned}
$$

Thus G is a group.
29. Define a function $l_{a}: G \longrightarrow G$ by the rule $l_{a}(g)=a * g$. Suppose that $l_{a}(b)=l_{a}(c)$. Then $a * b=a * c$ and so $b=c$. But then l_{a} is an injective function. As G is finite and l_{a} is injective it follows that l_{a} is surjective. Thus l_{a} is bijective. In particular we may find e such that $l_{a}(e)=a$. In this case $a * e=a$.
Similarly we may define a function $r_{b}: G \longrightarrow G$ by the rule $r_{b}(c)=c * b$. By symmetry r_{b} is bijective. Thus we may find f such that $f * b=b$. Now

$$
\begin{aligned}
(a * f) * b & =a *(f * b) \\
& =a * b
\end{aligned}
$$

As

$$
(a * f) * b=a * b
$$

we have

$$
a * f=a,
$$

by rule (3). As

$$
a * f=a=a * e,
$$

we must have $e=f$ by rule (2). As a and b are arbitrary, it follows that $e * g=g * e$ for any $g \in G$. Thus e plays the role of the identity. As r_{a} is surjective we may find an element $b \in G$ such that $b * a=e$. At this point we are done by question 28 but here is a much easier argument:

$$
\begin{aligned}
(a * b) * a & =a *(b * a) \quad \text { by associativity } \\
& =a * e \\
& =a \\
& =e * a .
\end{aligned}
$$

As

$$
(a * b) * a=e * a
$$

we must have $a * b=e$ by rule (3). Thus b is the inverse of a and G is a group.
30. Let $G=\mathbb{N}$ and let $a * b=a+b$. Then $*$ is an associative binary operation. If $a * b=a * c$ then $a+b=a+c$ so that $b=c$. $a * b=a+b=b+a=b * a$. But G is not a group, since inverses don't exist.
31. (a) Let f be the function $f(x)=\log x$ (we will adopt the convention that $\log -x=\log x)$. Then
$f(a * b)=f(a b)=\log (a b)=\log (a)+\log (b)=f(a)+f(b)=f(a) \# f(b)$, by the usual rules for logs. Given $y>0$ let $x=10^{y}$. Then $\log x=y$, so that f is surjective.
(b) Let f be any such function. We check that $f(1)=f(-1)=0$. We have

$$
f(1)=f(1 \cdot 1)=f(1)+f(1) .
$$

Hence $f(1)=0$. On the other hand,

$$
0=f(1)=f(-1 \cdot-1)=f(-1)+f(-1)
$$

so that $f(-1)=0$ as well. But then f is not injective.

