SECOND MIDTERM MATH 100A, UCSD, AUTUMN 23

You have 80 minutes.

There are 6 problems, and the total number of points is 85. Show all your work. Please make your work as clear and easy to follow as possible.

Name:
Signature:
Student ID #:
Section instructor:
Section Time:

Problem	Points	Score
1	15	
2	15	
3	15	
4	10	
5	10	
6	20	
7	10	
8	10	
Total	85	

1. (15pts) Give the definition of the commutator subgroup.

The subgroup generated by all elements of the form $a^{-1}b^{-1}ab$, where a and $b \in G$.

(ii) Give the definition of an automorphism.

An isomorphism $\phi \colon G \longrightarrow G$.

(iii) The kernel of a group homomorphism.

The kernel of the group homomorphism $\phi\colon G\longrightarrow H$ is the inverse image of the identity.

- 2. (15pts)
- (i) Find the cycle decomposition of the following element of S_9 ,

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 4 & 6 & 2 & 1 & 3 & 9 & 5 & 8 \end{pmatrix}.$$

(ii) Compute the conjugate of σ by τ , where $\sigma = (1,5)(6,3,2)$ and $\tau = (1,5,6)(4,3,7,2)$.

(iii) Is it possible to conjugate σ to σ' , where $\sigma = (1,5)(2,3)(4,7,6)$ and $\sigma' = (1,4)(3,5,2)(6,7)$? If so, find an element τ so that σ' is the conjugate of σ by τ . Otherwise explain why it is impossible.

As σ and σ' have the same cycle type, this is possible. One possibility is

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 6 & 7 & 3 & 4 & 2 & 5 \end{pmatrix}$$

3. (15pts) Let H be a subgroup of G and let

$$N(H) = \{ a \in G \mid aHa^{-1} \subset H \}.$$

Show that

(i) N(H) is a subgroup of G and $H \subset N(H)$.

We have to check that N(H) is non-empty and that it is closed under products and inverses. Suppose that $a \in H$ and let $h \in H$. Then $aha^{-1} \in H$ as H is a subgroup. Thus $a \in N(H)$ and so $H \subset N(H)$. In particular N(H) is non-empty as H is non-empty.

Suppose that a and $b \in N(H)$. We check $ab \in N(H)$. If $h \in H$ then we have

$$(ab)h(ab)^{-1} = a(bhb^{-1})a^{-1}$$

Note that $bhb^{-1} \in H$ as $b \in N(H)$. It follows that $a(bhb^{-1})a^{-1} \in H$, as $a \in N(H)$. Thus $ab \in N(H)$ and H is closed under products. Now suppose that $a \in N(H)$. We check $a^{-1} \in N(H)$. Unfortunately this fails. Here is an example where it fails. Let $G = A(\mathbb{Z})$ the permutations of the integers. Let H be the subgroup that fixes all of the negative integers

$$H = \{ \sigma \in A(\mathbb{Z}) \mid \sigma(n) = n, \forall n < 0 \}.$$

Consider

$$\tau \colon \mathbb{Z} \longrightarrow \mathbb{Z}$$
 given by $\tau(n) = n + 1$.

Then $\tau \in G$ is a permutation of the integers. It shifts everything to the right by one. In particular if $\sigma \in H$ then $\tau \sigma \tau^{-1}$ fixes all integers n < 1. Thus

$$\tau \sigma \tau^{-1} \in N(H).$$

However τ^{-1} shifts by one to the left. So we only know that $\tau^{-1}\sigma\tau$ fixes all integers n<-1. For example if we define σ to be the transposition that switches 0 and 1 and fixes everything else then $\sigma\in H$. But $\tau^{-1}\sigma\tau$ is the transposition that switches -1 and 0, so that $\tau^{-1}\sigma\tau\notin N(H)$. For the record the correct definition of N(H) is

$$N(H) = \{ a \in G \mid aHa^{-1} = H \}.$$

In this case if $a \in N(H)$ then

$$aHa^{-1} = H$$
 so that $H = a^{-1}Ha$

so that $a^{-1} \in N(H)$ and N(H) is closed under taking inverses. It follows that N(H) is a subgroup of G and $H \subset N(H)$.

(ii)
$$H \vartriangleleft N(H).$$

Suppose that $h \in H$ and $a \in N(H)$. Then $aha^{-1} \in H$. Thus $H \lhd N(H)$.

(iii) If K is a subgroup of G such that

$$H \lhd K$$

then

$$K \subset N(H)$$
.

Let $a \in K$. Let $h \in H$. As H is normal in K we have $aha^{-1} \in H$. Thus $a \in N(H)$. But then

$$K \subset N(H)$$
.

4. (10pts) Let G be a group and let H be a normal subgroup. Show that G/N is abelian if and only if N contains $a^{-1}b^{-1}ab$ for every a and $b \in G$.

Suppose that G contains the commutator $a^{-1}b^{-1}ab$ of every pair of elements a and b of G. Suppose that aH and bH are two left cosets Then

$$(bH)(aH) = baH$$
$$= ba(a^{-1}b^{-1}ab)H$$
$$= abH$$
$$= (aH)(bH).$$

Thus G/H is abelian.

Now suppose that G/H is abelian. Suppose that a and $b \in H$. We have

$$abH = (aH)(bH)$$
$$= (bH)(aH)$$
$$= baH.$$

It follows that ab = bah, for some $h \in H$. But then

$$a^{-1}b^{-1}ab = h \in H.$$

Thus H contains the commutator of a and b.

5. (10pts) Let G be a group and let Z be its centre. Prove that if G/Z is cyclic, then G is abelian.

Suppose that G/Z is generated by aZ. Then the elements of G/Z are of the form a^iZ , for $i \in \mathbb{Z}$.

Suppose that x and $y \in G$. Then xZ and yZ are two left cosets, so that $xZ = a^iZ$ and $yZ = a^jZ$, for some i and j. It follows that we may find z_1 and $z_2 \in Z$ so that $x = a^iz_1$ and $y = a^jz_2$. We have

$$xy = (a^{i}z_{1})(a^{j}z_{2})$$

$$= a^{i}(z_{1}a^{j})z_{2}$$

$$= a^{i}(a^{j}z_{1})z_{2}$$

$$= a^{i}a^{j}(z_{1}z_{2})$$

$$= a^{i+j}(z_{1}z_{2}).$$

Similarly $yx = a^{j+i}z_2z_1 = a^{i+j}z_1z_2 = xy$. Thus G is abelian.

6. (20pts) (i) Let $a \in G$. Prove that the map $\sigma = \sigma_a \colon G \longrightarrow G$ given as $\sigma(g) = aga^{-1}$, is an automorphism of G.

Suppose that g and h are elements of G. We have

$$\sigma(g)\sigma(h) = (aga^{-1})(aha^{-1})$$

$$= ag(a^{-1}a)ha^{-1}$$

$$= agha^{-1}$$

$$= \sigma(gh).$$

Thus σ is a group homomorphism.

(ii) Let $\phi: G \longrightarrow A(G)$ be the map which sends a to $\phi(a) = \sigma_a$. Show that ϕ is a group homomorphism.

Let a and $b \in G$. Let $\sigma = \sigma_a$, $\tau = \sigma_b$ and $\rho = \sigma_{ab}$. We want to check that $\rho = \sigma \tau$. Both sides of this equation are functions from G to G, so we just need to check that they have the same effect on an element $g \in G$:

$$(\sigma\tau)(g) = \sigma(\tau(g))$$

$$= \sigma(bgb^{-1})$$

$$= a(bgb^{-1})a^{-1}$$

$$= (ab)g(b^{-1}a^{-1})$$

$$= (ab)g(ab)^{-1}$$

$$= \rho(g).$$

Thus ϕ is a group homomorphism.

(iii) Show that the image $H = \phi(G)$ is isomorphic to G/Z, where Z is the centre of G.

We check that Z is the kernel of ϕ . Suppose that $a \in Z$ and let $\sigma = \sigma_a = \phi(a)$. If $g \in G$ then

$$\sigma(g) = aga^{-1} = gaa^{-1} = g.$$

Thus σ is the identity map and so $a \in \operatorname{Ker} \phi$.

Now suppose that $a \in \operatorname{Ker} \phi$. Then σ is the identity map and so

$$g = \sigma(g) = aga^{-1}.$$

Multiplying on the right by a we get

$$ga = ag$$

so that $a \in Z$. Thus $Z = \operatorname{Ker} \phi$ and the result follows by the first isomorphism theorem.

(iv) Show that H is normal in Aut(G).

Suppose that τ is an automorphism of G and let $\sigma = \sigma_a = \phi(a)$. Let $b = \tau(a)$ and let $\rho = \sigma_b = \phi(b)$. We check that

$$\tau \sigma \tau^{-1} = \rho.$$

Since both sides of this equation are functions from G to G we just need to check they have the same effect on elements g of G. As τ is a bijection we may find $h \in G$ such that $\tau(h) = g$. We have

$$\tau \sigma \tau^{-1}(g) = \tau \sigma \tau^{-1}(\tau(g))$$

$$= \tau(\sigma(h))$$

$$= \tau(aha^{-1})$$

$$= \tau(a)\tau(h)\tau(a^{-1})$$

$$= b\tau(h)b^{-1}$$

$$= \rho(g).$$

As τ is arbitrary and $\rho \in H$ it follows that H is normal in $\operatorname{Aut}(G)$.

Bonus Challenge Problems

7. (10pts) Prove the Second isomorphism theorem.

Theorem 0.1 (Second Isomorphism Theorem). Let G be a group, let H be a subgroup and let N be a normal subgroup. Then

$$H \lor N = HN = \{ hn \mid h \in H, n \in N \}.$$

Furthermore $H \cap N$ is a normal subgroup of H and the two groups $H/H \cap N$ and HN/N are isomorphic.

Proof. The pairwise products of the elements of H and N are certainly elements of $H \vee N$. Thus the RHS of the equality above is a subset of the LHS. The RHS is clearly non-empty, it contains H and N and so it suffices to prove that the RHS is closed under products and inverses. Suppose that x and y are elements of the RHS. Then $x = h_1 n_1$ and $y = h_2 n_2$, where $h_i \in H$ and $n_i \in N$. Now $h_2^{-1} n_1 h_2 = n_3 \in N$, as N is normal in G. So $n_1 h_2 = h_2 n_3$. In this case

$$xy = (h_1 n_1)(h_2 n_2)$$

$$= h_1(n_1 h_2)n_2$$

$$= h_1(h_2 n_3)n_2$$

$$= (h_1 h_2)(n_3 n_2),$$

which shows that xy has the correct form. On the other hand, suppose x = hn. Then $hnh^{-1} = m \in N$ as N is normal and so $hn^{-1}h^{-1} = m^{-1}$. In this case

$$x^{-1} = n^{-1}h^{-1}$$
$$= hm^{-1},$$

so that x^{-1} is of the correct form.

Hence the first statement. Let $H \longrightarrow HN$ be the natural inclusion. As N is normal in G, it is certainly normal in HN, so that we may compose the inclusion with the natural projection map to get a homomorphism

$$H \longrightarrow HN/N$$
.

This map sends h to hN.

Suppose that $x \in HN/N$. Then x = hnN = hN, where $h \in H$. Thus the homorphism above is clearly surjective. Suppose that $h \in H$ belongs to the kernel. Then hN = N, the identity coset, so that $h \in N$. Thus $h \in H \cap N$. The result then follows by the First Isomorphism Theorem applied to the map above.

8. (10pts) Prove that if G is an abelian group that contains an element of order m and an element of order n then it contains an element of order l, where l is the least common multiple of m and n.

We are given a and $b \in G$ of orders m and n. It is tempting to believe that ab is an element of order l.

However this not true. For example suppose that $b = a^{-1}$. Then a and b have the same order, so that l = m = n. However ab = e is an element of order one, not l.

Let d be the greatest common divisor of m and n. Then $b' = b^d$ is an element of order n' = n/d. The lowest common multiple of m and n' is still l.

Replacing b by b^d and n by n/d we may therefore assume that m and n are coprime. Consider the order k of c=ab. On the one hand

$$c^{l} = (ab)^{l}$$
$$= a^{l}b^{l}$$
$$= e.$$

Thus k divides l.

On the other hand, we have

$$c^m = (ab)^m$$
$$= a^m b^m$$
$$= b^m.$$

As m is coprime to n the order of b^m is n. Thus $l \leq k$. It follows that l = k. Thus G contains an element of order l.

In fact, going back to the original setup, it follows that ab^d is an element of order l.