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MATH 100A, UCSD, AUTUMN 23

You have 80 minutes.

There are 6 problems, and the total number of

points is 85. Show all your work. Please make

your work as clear and easy to follow as possible.
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1. (15pts) Give the definition of the commutator subgroup.

The subgroup generated by all elements of the form a−1b−1ab, where a
and b ∈ G.

(ii) Give the definition of an automorphism.

An isomorphism φ : G −→ G.

(iii) The kernel of a group homomorphism.

The kernel of the group homomorphism φ : G −→ H is the inverse
image of the identity.
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2. (15pts)
(i) Find the cycle decomposition of the following element of S9,

(

1 2 3 4 5 6 7 8 9
7 4 6 2 1 3 9 5 8

)

.

(1, 7, 9, 8, 5)(2, 4)(3, 6)

(ii) Compute the conjugate of σ by τ , where σ = (1, 5)(6, 3, 2) and

τ = (1, 5, 6)(4, 3, 7, 2).

(5, 6)(1, 7, 4).

(iii) Is it possible to conjugate σ to σ′, where σ = (1, 5)(2, 3)(4, 7, 6)
and σ′ = (1, 4)(3, 5, 2)(6, 7)? If so, find an element τ so that σ′ is the

conjugate of σ by τ . Otherwise explain why it is impossible.

As σ and σ′ have the same cycle type, this is possible. One possibility
is

τ =

(

1 2 3 4 5 6 7
1 6 7 3 4 2 5

)
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3. (15pts) Let H be a subgroup of G and let

N(H) = { a ∈ G | aHa−1 ⊂ H }.

Show that

(i) N(H) is a subgroup of G and H ⊂ N(H).

We have to check that N(H) is non-empty and that it is closed under
products and inverses. Suppose that a ∈ H and let h ∈ H. Then
aha−1 ∈ H as H is a subgroup. Thus a ∈ N(H) and so H ⊂ N(H).
In particular N(H) is non-empty as H is non-empty.
Suppose that a and b ∈ N(H). We check ab ∈ N(H). If h ∈ H then
we have

(ab)h(ab)−1 = a(bhb−1)a−1

Note that bhb−1 ∈ H as b ∈ N(H). It follows that a(bhb−1)a−1 ∈ H,
as a ∈ N(H). Thus ab ∈ N(H) and H is closed under products.
Now suppose that a ∈ N(H). We check a−1 ∈ N(H). Unfortunately
this fails. Here is an example where it fails. Let G = A(Z) the per-
mutations of the integers. Let H be the subgroup that fixes all of the
negative integers

H = {σ ∈ A(Z) | σ(n) = n, ∀n < 0 }.

Consider
τ : Z −→ Z given by τ(n) = n+ 1.

Then τ ∈ G is a permutation of the integers. It shifts everything to
the right by one. In particular if σ ∈ H then τστ−1 fixes all integers
n < 1. Thus

τστ−1 ∈ N(H).

However τ−1 shifts by one to the left. So we only know that τ−1στ fixes
all integers n < −1. For example if we define σ to be the tranposition
that switches 0 and 1 and fixes everything else then σ ∈ H. But τ−1στ
is the transposition that switches −1 and 0, so that τ−1στ /∈ N(H).
For the record the correct definition of N(H) is

N(H) = { a ∈ G | aHa−1 = H }.

In this case if a ∈ N(H) then

aHa−1 = H so that H = a−1Ha

so that a−1 ∈ N(H) and N(H) is closed under taking inverses.
It follows that N(H) is a subgroup of G and H ⊂ N(H).
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(ii)
H �N(H).

Suppose that h ∈ H and a ∈ N(H). Then aha−1 ∈ H. Thus

H �N(H).

(iii) If K is a subgroup of G such that

H �K

then

K ⊂ N(H).

Let a ∈ K. Let h ∈ H. As H is normal in K we have aha−1 ∈ H.
Thus a ∈ N(H). But then

K ⊂ N(H).
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4. (10pts) Let G be a group and let H be a normal subgroup. Show

that G/N is abelian if and only if N contains a−1b−1ab for every a and

b ∈ G.

Suppose that G contains the commutator a−1b−1ab of every pair of
elements a and b of G. Suppose that aH and bH are two left cosets
Then

(bH)(aH) = baH

= ba(a−1b−1ab)H

= abH

= (aH)(bH).

Thus G/H is abelian.
Now suppose that G/H is abelian. Suppose that a and b ∈ H. We
have

abH = (aH)(bH)

= (bH)(aH)

= baH.

It follows that ab = bah, for some h ∈ H. But then

a−1b−1ab = h ∈ H.

Thus H contains the commutator of a and b.
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5. (10pts) Let G be a group and let Z be its centre. Prove that if G/Z
is cyclic, then G is abelian.

Suppose that G/Z is generated by aZ. Then the elements of G/Z are
of the form aiZ, for i ∈ Z.
Suppose that x and y ∈ G. Then xZ and yZ are two left cosets, so
that xZ = aiZ and yZ = ajZ, for some i and j. It follows that we
may find z1 and z2 ∈ Z so that x = aiz1 and y = ajz2.
We have

xy = (aiz1)(a
jz2)

= ai(z1a
j)z2

= ai(ajz1)z2

= aiaj(z1z2)

= ai+j(z1z2).

Similarly yx = aj+iz2z1 = ai+jz1z2 = xy. Thus G is abelian.
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6. (20pts) (i) Let a ∈ G. Prove that the map

σ = σa : G −→ G given as σ(g) = aga−1,

is an automorphism of G.

Suppose that g and h are elements of G. We have

σ(g)σ(h) = (aga−1)(aha−1)

= ag(a−1a)ha−1

= agha−1

= σ(gh).

Thus σ is a group homomorphism.

(ii) Let φ : G −→ A(G) be the map which sends a to φ(a) = σa. Show

that φ is a group homomorphism.

Let a and b ∈ G. Let σ = σa, τ = σb and ρ = σab. We want to check
that ρ = στ . Both sides of this equation are functions from G to G,
so we just need to check that they have the same effect on an element
g ∈ G:

(στ)(g) = σ(τ(g))

= σ(bgb−1)

= a(bgb−1)a−1

= (ab)g(b−1a−1)

= (ab)g(ab)−1

= ρ(g).

Thus φ is a group homomorphism.
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(iii) Show that the image H = φ(G) is isomorphic to G/Z, where Z is

the centre of G.

We check that Z is the kernel of φ. Suppose that a ∈ Z and let
σ = σa = φ(a). If g ∈ G then

σ(g) = aga−1 = gaa−1 = g.

Thus σ is the identity map and so a ∈ Kerφ.
Now suppose that a ∈ Kerφ. Then σ is the identity map and so

g = σ(g) = aga−1.

Multiplying on the right by a we get

ga = ag,

so that a ∈ Z. Thus Z = Kerφ and the result follows by the first
isomorphism theorem.

(iv) Show that H is normal in Aut(G).

Suppose that τ is an automorphism of G and let σ = σa = φ(a). Let
b = τ(a) and let ρ = σb = φ(b). We check that

τστ−1 = ρ.

Since both sides of this equation are functions from G to G we just
need to check they have the same effect on elements g of G. As τ is a
bijection we may find h ∈ G such that τ(h) = g. We have

τστ−1(g) = τστ−1(τ(g))

= τ(σ(h))

= τ(aha−1)

= τ(a)τ(h)τ(a−1)

= bτ(h)b−1

= ρ(g).

As τ is arbitrary and ρ ∈ H it follows that H is normal in Aut(G).
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Bonus Challenge Problems

7. (10pts) Prove the Second isomorphism theorem.

Theorem 0.1 (Second Isomorphism Theorem). Let G be a group, let

H be a subgroup and let N be a normal subgroup. Then

H ∨N = HN = {hn |h ∈ H,n ∈ N }.

Furthermore H ∩ N is a normal subgroup of H and the two groups

H/H ∩N and HN/N are isomorphic.

Proof. The pairwise products of the elements of H and N are certainly
elements of H ∨N . Thus the RHS of the equality above is a subset of
the LHS. The RHS is clearly non-empty, it contains H and N and so
it suffices to prove that the RHS is closed under products and inverses.
Suppose that x and y are elements of the RHS. Then x = h1n1 and
y = h2n2, where hi ∈ H and ni ∈ N . Now h−1

2 n1h2 = n3 ∈ N , as N is
normal in G. So n1h2 = h2n3. In this case

xy = (h1n1)(h2n2)

= h1(n1h2)n2

= h1(h2n3)n2

= (h1h2)(n3n2),

which shows that xy has the correct form. On the other hand, suppose
x = hn. Then hnh−1 = m ∈ N as N is normal and so hn−1h−1 = m−1.
In this case

x−1 = n−1h−1

= hm−1,

so that x−1 is of the correct form.
Hence the first statement. Let H −→ HN be the natural inclusion. As
N is normal in G, it is certainly normal inHN , so that we may compose
the inclusion with the natural projection map to get a homomorphism

H −→ HN/N.

This map sends h to hN .
Suppose that x ∈ HN/N . Then x = hnN = hN , where h ∈ H.
Thus the homorphism above is clearly surjective. Suppose that h ∈ H
belongs to the kernel. Then hN = N , the identity coset, so that h ∈ N .
Thus h ∈ H ∩ N . The result then follows by the First Isomorphism
Theorem applied to the map above. �
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8. (10pts) Prove that if G is an abelian group that contains an element

of order m and an element of order n then it contains an element of

order l, where l is the least common multiple of m and n.

We are given a and b ∈ G of orders m and n. It is tempting to believe
that ab is an element of order l.
However this not true. For example suppose that b = a−1. Then a
and b have the same order, so that l = m = n. However ab = e is an
element of order one, not l.
Let d be the greatest common divisor of m and n. Then b′ = bd is an
element of order n′ = n/d. The lowest common multiple of m and n′

is still l.
Replacing b by bd and n by n/d we may therefore assume that m and
n are coprime. Consider the order k of c = ab. On the one hand

cl = (ab)l

= albl

= e.

Thus k divides l.
On the other hand, we have

cm = (ab)m

= ambm

= bm.

As m is coprime to n the order of bm is n. Thus l ≤ k. It follows that
l = k. Thus G contains an element of order l.
In fact, going back to the original setup, it follows that abd is an element
of order l.
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