SECOND MIDTERM
 MATH 100A, UCSD, AUTUMN 23

You have 80 minutes.

There are 6 problems, and the total number of points is 85 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad
Student ID \#: \qquad
Section instructor: \qquad
Section Time: \qquad

Problem	Points	Score
1	15	
2	15	
3	15	
4	10	
5	10	
6	20	
7	10	
8	10	
Total	85	

1. (15pts) Give the definition of the commutator subgroup.

The subgroup generated by all elements of the form $a^{-1} b^{-1} a b$, where a and $b \in G$.
(ii) Give the definition of an automorphism.

An isomorphism $\phi: G \longrightarrow G$.
(iii) The kernel of a group homomorphism.

The kernel of the group homomorphism $\phi: G \longrightarrow H$ is the inverse image of the identity.
2. $(15 \mathrm{pts})$
(i) Find the cycle decomposition of the following element of S_{9},

$$
\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 4 & 6 & 2 & 1 & 3 & 9 & 5 & 8
\end{array}\right) .
$$

$$
(1,7,9,8,5)(2,4)(3,6)
$$

(ii) Compute the conjugate of σ by τ, where $\sigma=(1,5)(6,3,2)$ and $\tau=(1,5,6)(4,3,7,2)$.

$$
(5,6)(1,7,4)
$$

(iii) Is it possible to conjugate σ to σ^{\prime}, where $\sigma=(1,5)(2,3)(4,7,6)$ and $\sigma^{\prime}=(1,4)(3,5,2)(6,7)$? If so, find an element τ so that σ^{\prime} is the conjugate of σ by τ. Otherwise explain why it is impossible.

As σ and σ^{\prime} have the same cycle type, this is possible. One possibility is

$$
\tau=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 6 & 7 & 3 & 4 & 2 & 5
\end{array}\right)
$$

3. (15pts) Let H be a subgroup of G and let

$$
N(H)=\left\{a \in G \mid a H a^{-1} \subset H\right\} .
$$

Show that
(i) $N(H)$ is a subgroup of G and $H \subset N(H)$.

We have to check that $N(H)$ is non-empty and that it is closed under products and inverses. Suppose that $a \in H$ and let $h \in H$. Then $a h a^{-1} \in H$ as H is a subgroup. Thus $a \in N(H)$ and so $H \subset N(H)$. In particular $N(H)$ is non-empty as H is non-empty.
Suppose that a and $b \in N(H)$. We check $a b \in N(H)$. If $h \in H$ then we have

$$
(a b) h(a b)^{-1}=a\left(b h b^{-1}\right) a^{-1}
$$

Note that $b h b^{-1} \in H$ as $b \in N(H)$. It follows that $a\left(b h b^{-1}\right) a^{-1} \in H$, as $a \in N(H)$. Thus $a b \in N(H)$ and H is closed under products.
Now suppose that $a \in N(H)$. We check $a^{-1} \in N(H)$. Unfortunately this fails. Here is an example where it fails. Let $G=A(\mathbb{Z})$ the permutations of the integers. Let H be the subgroup that fixes all of the negative integers

$$
H=\{\sigma \in A(\mathbb{Z}) \mid \sigma(n)=n, \forall n<0\} .
$$

Consider

$$
\tau: \mathbb{Z} \longrightarrow \mathbb{Z} \quad \text { given by } \quad \tau(n)=n+1
$$

Then $\tau \in G$ is a permutation of the integers. It shifts everything to the right by one. In particular if $\sigma \in H$ then $\tau \sigma \tau^{-1}$ fixes all integers $n<1$. Thus

$$
\tau \sigma \tau^{-1} \in N(H)
$$

However τ^{-1} shifts by one to the left. So we only know that $\tau^{-1} \sigma \tau$ fixes all integers $n<-1$. For example if we define σ to be the tranposition that switches 0 and 1 and fixes everything else then $\sigma \in H$. But $\tau^{-1} \sigma \tau$ is the transposition that switches -1 and 0 , so that $\tau^{-1} \sigma \tau \notin N(H)$. For the record the correct definition of $N(H)$ is

$$
N(H)=\left\{a \in G \mid a H a^{-1}=H\right\} .
$$

In this case if $a \in N(H)$ then

$$
a H a^{-1}=H \quad \text { so that } \quad H=a^{-1} H a
$$

so that $a^{-1} \in N(H)$ and $N(H)$ is closed under taking inverses. It follows that $N(H)$ is a subgroup of G and $H \subset N(H)$.
(ii)

$$
H \triangleleft N(H) .
$$

Suppose that $h \in H$ and $a \in N(H)$. Then $a h a^{-1} \in H$. Thus

$$
H \triangleleft N(H) .
$$

(iii) If K is a subgroup of G such that

$$
H \triangleleft K
$$

then

$$
K \subset N(H) .
$$

Let $a \in K$. Let $h \in H$. As H is normal in K we have $a h a^{-1} \in H$. Thus $a \in N(H)$. But then

$$
K \subset N(H)
$$

4. (10pts) Let G be a group and let H be a normal subgroup. Show that G / N is abelian if and only if N contains $a^{-1} b^{-1} a b$ for every a and $b \in G$.

Suppose that G contains the commutator $a^{-1} b^{-1} a b$ of every pair of elements a and b of G. Suppose that $a H$ and $b H$ are two left cosets Then

$$
\begin{aligned}
(b H)(a H) & =b a H \\
& =b a\left(a^{-1} b^{-1} a b\right) H \\
& =a b H \\
& =(a H)(b H) .
\end{aligned}
$$

Thus G / H is abelian.
Now suppose that G / H is abelian. Suppose that a and $b \in H$. We have

$$
\begin{aligned}
a b H & =(a H)(b H) \\
& =(b H)(a H) \\
& =b a H .
\end{aligned}
$$

It follows that $a b=b a h$, for some $h \in H$. But then

$$
a^{-1} b^{-1} a b=h \in H .
$$

Thus H contains the commutator of a and b.
5. (10pts) Let G be a group and let Z be its centre. Prove that if G / Z is cyclic, then G is abelian.

Suppose that G / Z is generated by $a Z$. Then the elements of G / Z are of the form $a^{i} Z$, for $i \in \mathbb{Z}$.
Suppose that x and $y \in G$. Then $x Z$ and $y Z$ are two left cosets, so that $x Z=a^{i} Z$ and $y Z=a^{j} Z$, for some i and j. It follows that we may find z_{1} and $z_{2} \in Z$ so that $x=a^{i} z_{1}$ and $y=a^{j} z_{2}$.
We have

$$
\begin{aligned}
x y & =\left(a^{i} z_{1}\right)\left(a^{j} z_{2}\right) \\
& =a^{i}\left(z_{1} a^{j}\right) z_{2} \\
& =a^{i}\left(a^{j} z_{1}\right) z_{2} \\
& =a^{i} a^{j}\left(z_{1} z_{2}\right) \\
& =a^{i+j}\left(z_{1} z_{2}\right) .
\end{aligned}
$$

Similarly $y x=a^{j+i} z_{2} z_{1}=a^{i+j} z_{1} z_{2}=x y$. Thus G is abelian.
6. (20pts) (i) Let $a \in G$. Prove that the map

$$
\sigma=\sigma_{a}: G \longrightarrow G \quad \text { given as } \quad \sigma(g)=a g a^{-1}
$$

is an automorphism of G.

Suppose that g and h are elements of G. We have

$$
\begin{aligned}
\sigma(g) \sigma(h) & =\left(a g a^{-1}\right)\left(a h a^{-1}\right) \\
& =a g\left(a^{-1} a\right) h a^{-1} \\
& =a g h a^{-1} \\
& =\sigma(g h) .
\end{aligned}
$$

Thus σ is a group homomorphism.
(ii) Let $\phi: G \longrightarrow A(G)$ be the map which sends a to $\phi(a)=\sigma_{a}$. Show that ϕ is a group homomorphism.

Let a and $b \in G$. Let $\sigma=\sigma_{a}, \tau=\sigma_{b}$ and $\rho=\sigma_{a b}$. We want to check that $\rho=\sigma \tau$. Both sides of this equation are functions from G to G, so we just need to check that they have the same effect on an element $g \in G$:

$$
\begin{aligned}
(\sigma \tau)(g) & =\sigma(\tau(g)) \\
& =\sigma\left(b g b^{-1}\right) \\
& =a\left(b g b^{-1}\right) a^{-1} \\
& =(a b) g\left(b^{-1} a^{-1}\right) \\
& =(a b) g(a b)^{-1} \\
& =\rho(g) .
\end{aligned}
$$

Thus ϕ is a group homomorphism.
(iii) Show that the image $H=\phi(G)$ is isomorphic to G / Z, where Z is the centre of G.

We check that Z is the kernel of ϕ. Suppose that $a \in Z$ and let $\sigma=\sigma_{a}=\phi(a)$. If $g \in G$ then

$$
\sigma(g)=a g a^{-1}=g a a^{-1}=g .
$$

Thus σ is the identity map and so $a \in \operatorname{Ker} \phi$.
Now suppose that $a \in \operatorname{Ker} \phi$. Then σ is the identity map and so

$$
g=\sigma(g)=a g a^{-1} .
$$

Multiplying on the right by a we get

$$
g a=a g,
$$

so that $a \in Z$. Thus $Z=\operatorname{Ker} \phi$ and the result follows by the first isomorphism theorem.
(iv) Show that H is normal in $\operatorname{Aut}(G)$.

Suppose that τ is an automorphism of G and let $\sigma=\sigma_{a}=\phi(a)$. Let $b=\tau(a)$ and let $\rho=\sigma_{b}=\phi(b)$. We check that

$$
\tau \sigma \tau^{-1}=\rho
$$

Since both sides of this equation are functions from G to G we just need to check they have the same effect on elements g of G. As τ is a bijection we may find $h \in G$ such that $\tau(h)=g$. We have

$$
\begin{aligned}
\tau \sigma \tau^{-1}(g) & =\tau \sigma \tau^{-1}(\tau(g)) \\
& =\tau(\sigma(h)) \\
& =\tau\left(a h a^{-1}\right) \\
& =\tau(a) \tau(h) \tau\left(a^{-1}\right) \\
& =b \tau(h) b^{-1} \\
& =\rho(g) .
\end{aligned}
$$

As τ is arbitrary and $\rho \in H$ it follows that H is normal in $\operatorname{Aut}(G)$.

Bonus Challenge Problems

7. (10pts) Prove the Second isomorphism theorem.

Theorem 0.1 (Second Isomorphism Theorem). Let G be a group, let H be a subgroup and let N be a normal subgroup. Then

$$
H \vee N=H N=\{h n \mid h \in H, n \in N\}
$$

Furthermore $H \cap N$ is a normal subgroup of H and the two groups $H / H \cap N$ and $H N / N$ are isomorphic.

Proof. The pairwise products of the elements of H and N are certainly elements of $H \vee N$. Thus the RHS of the equality above is a subset of the LHS. The RHS is clearly non-empty, it contains H and N and so it suffices to prove that the RHS is closed under products and inverses. Suppose that x and y are elements of the RHS. Then $x=h_{1} n_{1}$ and $y=h_{2} n_{2}$, where $h_{i} \in H$ and $n_{i} \in N$. Now $h_{2}^{-1} n_{1} h_{2}=n_{3} \in N$, as N is normal in G. So $n_{1} h_{2}=h_{2} n_{3}$. In this case

$$
\begin{aligned}
x y & =\left(h_{1} n_{1}\right)\left(h_{2} n_{2}\right) \\
& =h_{1}\left(n_{1} h_{2}\right) n_{2} \\
& =h_{1}\left(h_{2} n_{3}\right) n_{2} \\
& =\left(h_{1} h_{2}\right)\left(n_{3} n_{2}\right),
\end{aligned}
$$

which shows that $x y$ has the correct form. On the other hand, suppose $x=h n$. Then $h n h^{-1}=m \in N$ as N is normal and so $h n^{-1} h^{-1}=m^{-1}$. In this case

$$
\begin{aligned}
x^{-1} & =n^{-1} h^{-1} \\
& =h m^{-1},
\end{aligned}
$$

so that x^{-1} is of the correct form.
Hence the first statement. Let $H \longrightarrow H N$ be the natural inclusion. As N is normal in G, it is certainly normal in $H N$, so that we may compose the inclusion with the natural projection map to get a homomorphism

$$
H \longrightarrow H N / N .
$$

This map sends h to $h N$.
Suppose that $x \in H N / N$. Then $x=h n N=h N$, where $h \in H$. Thus the homorphism above is clearly surjective. Suppose that $h \in H$ belongs to the kernel. Then $h N=N$, the identity coset, so that $h \in N$. Thus $h \in H \cap N$. The result then follows by the First Isomorphism Theorem applied to the map above.
8. (10pts) Prove that if G is an abelian group that contains an element of order m and an element of order n then it contains an element of order l, where l is the least common multiple of m and n.

We are given a and $b \in G$ of orders m and n. It is tempting to believe that $a b$ is an element of order l.
However this not true. For example suppose that $b=a^{-1}$. Then a and b have the same order, so that $l=m=n$. However $a b=e$ is an element of order one, not l.
Let d be the greatest common divisor of m and n. Then $b^{\prime}=b^{d}$ is an element of order $n^{\prime}=n / d$. The lowest common multiple of m and n^{\prime} is still l.
Replacing b by b^{d} and n by n / d we may therefore assume that m and n are coprime. Consider the order k of $c=a b$. On the one hand

$$
\begin{aligned}
c^{l} & =(a b)^{l} \\
& =a^{l} b^{l} \\
& =e .
\end{aligned}
$$

Thus k divides l.
On the other hand, we have

$$
\begin{aligned}
c^{m} & =(a b)^{m} \\
& =a^{m} b^{m} \\
& =b^{m} .
\end{aligned}
$$

As m is coprime to n the order of b^{m} is n. Thus $l \leq k$. It follows that $l=k$. Thus G contains an element of order l.
In fact, going back to the original setup, it follows that $a b^{d}$ is an element of order l.

