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MATH 100A, UCSD, AUTUMN 23

You have 80 minutes.

There are 5 problems, and the total number of

points is 70. Show all your work. Please make

your work as clear and easy to follow as possible.
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1. (15pts) Give the definition of a group.

A group is a set G together with a binary operation ∗ such that

(1) ∗ is associative. That is, for all a, b and c ∈ G

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(2) There is an element e ∈ G, called the identity, with the following
property. For all a ∈ G,

e ∗ a = a ∗ e = a.

(3) Every element a ∈ G has an inverse b, which satisfies the fol-
lowing property.

a ∗ b = b ∗ a = e.

(ii) Give the definition of the centre Z(G) of a group G.

Z(G) = { a ∈ G | for every b ∈ G, ab = ba }..

(iii) Let G be a group and H a subgroup. Give the definition of a right
coset.

Let a ∈ G. The right coset of a is

Ha = {ha |h ∈ H }.
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2. (20pts) (i) Give a description of the group D4 of symmetries of a
square.

Label the vertices A, B, C and D, going clockwise from the top left.
We have

D4 = { I, R,R2, R3, R4, D1, D2, F1, F2 },

where R is rotation through π/2, D1 is the diagonal flip about AC, D2

is the diagonal flip about BD, F1 is the horizontal flip, switch A and
D, B and C and F2 is the vertical flip, switch A and B, C and D.
This gives 8 symmetries. I claim this is all of them.
In fact any symmetry is determined by its action on the fours vertices
A, B, C and D. Now there are 24 = 4! possible such permutations.
But any symmetry of a square must fix opposite corners. Thus once
we have decided where to send A, for which there are four possibilities,
the position of C is determined, it is opposite to A. There are then two
possible positions for B. So there are at most eight symmetries and we
have listed all of them.
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(ii) List all subgroups of D4.

The order of D4 is 8 and so the order of a subgroup H of D4 is 1, 2, 4
or 8.
If it is 1 then H = {I} and if it is 8 then H = D4. If the order of H
is two then H has two elements, one is the identity and the other is
its own inverse. There are five such elements, F1, F2, D1, D2 and R2.
Thus the two element subgroups are

{I, F1}, {I, F2}, {I,D1}, {I,D2}, and {I, R2}.

We start looking for subgroups. Two trivial examples are
A non-trivial example is afforded by the set of all rotations {I, R,R2, R3}.
Clearly closed under products and inverses. Note that rotation through
π radians R2 generates the subgroup
Simliarly, since any flip is its own inverse, the following are all sub-
groups,
Now try combining side flips and diagonal flips. Now F1D1 = R3. So
any subgroup that contains F1 and D1 must contain R3 and hence all
rotations. From there it is easy to see we will get the whole of G. So
we cannot combine side flips with diagonal flips.
Now consider combining rotations and flips. Note that F1F2 = R2 and
D1D2 = R2 by direct computation. We then try to see if

{I, F1, F2, R
2}

is a subgroup. As this is finite, it suffices to check that it is closed under
products. We look at pairwise products. If one of the terms is I this is
clear. We already checked F1F2. It remains to check F1R

2 and F2R
2.

Consider the equation F1F2 = R2. Multiplying by F1 on the left, and
using the fact that it is its own inverse, we get F2 = F1R

2. Similarly
all other products, of any two of F1, F2 and R2, gives the third. Thus

{I, F1, F2, R
2}

is a subgroup.
Similarly

{I,D1, D2, R
2}

is a subgroup.
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(iii) Find the left cosets (up to the obvious symmetries of the sub-
groups).

In the notation of the first question from homework 2, there are eight
subgroups of D4, up to symmetries.

{I}, {I, R2}, {I, F1}, {I,D1}, {I, R,R2, R3}, {I,D1, D2, R
2}, {I, F1, F2, R

2}, D4.

D4 has one left and one right coset, D4 itself. At the other extreme the
left and right cosets of {I} are the eight one element subsets of D4,

{ {I}, {R}, {R2}, {R3}, {D1}, {D2}, {F1}, {F2}}.

The three subgroups of order 4 have one other coset (both left and
right), the complement of the subgroup:

{ {I, R,R2, R3}, {D1, D2, F1, F2} },

{ {I,D1, D2, R
2}, {R,R3, F1, F2} },

{ {I, F1, F2, R
2}, {R,R3, D1, D2} }.

Now we attack the three subgroups of order 2. We are looking for four
subsets of order 2.
If we start with H = {I, R2} then we get the partition

{ {I, R2}, {R,R3}, {D1, D2}, {F1, F2}},

regardless of whether we look at left or right cosets.
If we start with H = {I, F1} then we get the two partitions

{ {I, F1}, {R,D1}, {R
2, F2}, {R

3, D2}} and { {I, F1}, {R,D2}, {R
2, F2}, {R

3, D1}}.

Finally, if we start with H = {I,D1} then we get the two partitions

{ {I,D1}, {R,F2}, {R
2, D2}, {R

3, F1}} and { {I,D1}, {R,F1}, {R
2, D2}, {R

3, F2}}.
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4. (10pts) True or False? If true then prove the result and if false then
give a counterexample.
(i) The union of two subgroups of a group is a subgroup.

False. Let G = D3, H = {I, F1} and K = {I, F2}. Then H and K are
both subgroups of G but the union

H ∪K = {I, F1, F2},

is not.

(ii) The intersection of two subgroups of a group is a subgroup.

True. Suppose that H and K are subgroups of G. The intersection
is non-empty as it contains e. We check that H ∩ K is closed under
products and inverses.
Suppose that a and b ∈ H ∩K. Then a and b ∈ H and a and b ∈ K.
As H is a subgroup, ab ∈ H and as K is a subgroup, ab ∈ K. But then
ab ∈ H ∩K and H ∩K is closed under products.
Suppose that a ∈ H∩K. Then a ∈ H and a ∈ K. As H is a subgroup,
a−1 ∈ H and as K is a subgroup, a−1 ∈ K. But then a−1 ∈ H ∩K and
H ∩K is closed under inverses.
As H ∩K is closed under products and inverses it is a subgroup.
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4. (10pts) Let G be a group and let H be a subgroup. Define a relation
∼ by the rule a ∼ b if and only if a−1b ∈ H. Prove that ∼ is an
equivalence relation. What are the equivalence classes?

We have to check three things. First we check reflexivity. Suppose that
a ∈ G. Then a−1a = e. As H is a subgroup, it certainly contains e and
a ∼ a. Thus reflexivity holds.
Now we check symmetry. Suppose that a, b ∈ G and that a ∼ b. Then
h = a−1b ∈ H. As H is a subgroup, it contains h−1 = b−1a. But then
b ∼ a. Thus symmetry holds.
Now we check transitivity. Suppose that a, b, c ∈ G and that a ∼ b,
b ∼ c. Then h = a−1b ∈ H and k = b−1c ∈ H. As H is a subgroup, it
contains the product hk = (a−1b)(b−1c) = a−1c. But then c ∼ a. Thus
transitivity holds.
The equivalence classes are precisely the left cosets.
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5. (15pts) (i) Carefully state (but do not prove) Lagrange’s Theorem.

Let G be a group and let H be a subgroup. Then

|G| = |H|[G : H],

where [G : H] counts the number of left cosets. In particular if G is
finite, then the order of H divides the order of G.

(ii) Show that if G is a finite group with identity e and there is an
element a ∈ G such that a2 = e then either a = e or G has even order.

As a2 = e the order of a is either 1 or 2. If the order of G is odd it
cannot be 2 by Lagrange. Thus the order of a is one. But then x = e.
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Bonus Challenge Problems

6. (10pts) Prove Lagrange’s Theorem.

Let G be a group and let H be a subgroup. Then

|G| = |H|[G : H].

Since the left cosets of H partition G into a disjoint union of subsets,
and the number of left cosets is precisely equal to [G : H], it is enough
to prove that each left coset has the same cardinality as H.
Let a ∈ G. Define a map

f : H −→ aH

by setting f(h) = ah. We want to show that f is bijection. The easiest
way to proceed is to find the inverse g of f . Define a map

g : aH −→ G

by setting f(k) = a−1k. It is clear that the composition, either way, is
equal to the identity, as a−1a = aa−1 = e. But then f is a bijection
and H and gH have the same cardinality.
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7. (10pts) Find the centre Z(Dn) of the dihedral group Dn of order 2n.

The dihedral group is the group of symmetries of a regular n-gon. One
obvious symmetry is rotation R through 2π/n. The powers of R give n
distinct rotations, including I. One can also write down a flip F . If n
is odd then F flips about a vertex and the centre of the opposite side;
if n is even then F flips about two opposite vertices.
Consider the subgroup H = 〈R,F 〉 generated by R and F . H contains
the subgroup of all rotations 〈R〉 which has order n. Thus the order
of H is a multiple of n by Lagrange. It contains more than n elements
and so it must contain at least 2n elements.
On the other hand if A and B are adjacent vertices then any symmetry
of an n-gon is determined by where it sends A and B. There are n
possible places to send A. The image of B is then adjacent to A and
so there are two choices for the image of B.
Thus there are at most 2n symmetries. It follows that H = Dn. In fact

Ri and FRi where 0 ≤ i < n.

are 2n distinct elements of Dn, so that these are the elements of Dn.
Note that h commutes with g if and only if

hgh−1 = g.

Thus g /∈ Z(G) if
hgh−1 6= g

for some h ∈ G.
h belongs to the centre if and only if h commutes with every g ∈ G. It
is enough to check h commutes with every generator. So it suffices to
check that h commutes with F and R.
We may suppose that the rotation R sends A to B and that F fixes A
and sends B to the other vertex Z adjacent to A.
Note that

FRF−1 = FRF = R−1.

We check that both sides have the same effect on the vertices A and
B. F sends A to A, R sends A to B and F sends B to Z. On the
other hand F sends B to Z, R sends Z to A and F sends A to A. Thus
FRF sends A to Z and B to A. This is precisely what R−1 does.
Thus

FRiF = R−i = Rn−i.

This is not equal to Ri unless

i = n− i that is 2i = n.
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This is only possible if n = 2m is even.
If Rm is in the centre as it commutes with R and F .
On the other hand

F (FRi)F−1 = F (FRiF−1)

= FR−i.

Thus FRi is not in the centre, unless n is even and i = m. We argue
that FRm is not in the centre.
There are two ways to proceed. For the first note that FRm is a flip.
Flips come in families, up to symmetries, and so it is not possible for
only one member of the family to be in the centre. Thus FRm is not
in the centre.
For the second, we simply compute. Note that

RFR−1 = FR−2.

We check that both sides have the same effect on the vertices A and B.
R−1 sends A to Z, F sends Z to B and R sends B to C. On the other
hand R−1 sends B to A, F sends A to A and R sends A to B. Thus
RFR−1 sends A to C and fixes B. This is precisely what R−2 does.
It follows that

R(FRm)R−1 = (RFR−1)Rm

= FR−2Rm

= FRm−2.

This is not equal to Rm as n > 2.
Finally F is not in the centre.
Thus the centre depends on the parity of n

Z(Dn) =

{

{I, Rm} if n = 2m is even

{I} if n is odd.
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