
9. Cyclic groups

Recall that a group G is cyclic if it is generated by one element a.
In other words, G = 〈a〉.

One reason that cyclic groups are so important, is that any group
G contains lots of cyclic groups, the subgroups generated by the ele-
ments of G. On the other hand, cyclic groups are reasonably easy to
understand. First an easy lemma about the order of an element.

Lemma 9.1. Let G be a group and let g ∈ G be an element of G.
Then the order of g is the smallest positive number k such that ak =

e.

Proof. Replacing G by the subgroup 〈g〉 generated by g, we might as
well assume that G is cyclic, generated by g.

Suppose that gl = e. I claim that in this case

G = { e, g, g2, g3, g4, . . . , gl−1 }.
Indeed it suffices to show that the set is closed under multiplication
and taking inverses.

Suppose that gi and gj are in the set. Then gigj = gi+j. If i+ j < l
there is nothing to prove. If i+ j ≥ l, then use the fact that gl = e to
rewrite gi+j as gi+j−l. In this case i+ j − l > 0 and less than l. So the
set is closed under products.

Given gi, what is its inverse? Well gl−igi = gl = e. So gl−i is the
inverse of gi. Alternatively we could simply use the fact that H is
finite, to conclude that it must be closed under taking inverses.

Thus |G| ≤ l and in particular |G| ≤ k. In particular if G is infinite,
there is no integer k such that gk = e and the order of g is infinite and
the smallest k such that gk = e is infinity. Thus we may assume that
the order of g is finite.

Suppose that |G| < k. Then there must be some repetitions in the
set

{ e, g, g2, g3, g4, . . . , gk−1 }.
Thus ga = gb for some a 6= b between 0 and k− 1. Suppose that a < b.
Then gb−a = e. But this contradicts the fact that k is the smallest
integer such that gk = e. �

Lemma 9.2. Let G be a finite group of order n and let g be an element
of G.

Then gn = e.

Proof. We know that gk = e where k is the order of g. But k divides
n. So n = km. But then

gn = gkm = (gk)m = em = e. �
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Lemma 9.3. Let G be a cyclic group, generated by a.
Then

(1) G is abelian.
(2) If G is infinite, the elements of G are precisely

. . . , a−3, a−2, a−1, e, a, a2, a3, . . .

(3) If G is finite, of order n, then the elements of G are precisely

e, a, a2, . . . , an−2, an−1,

and an = e.

Proof. We first prove (1). Suppose that g and h are two elements of G.
As G is generated by a, there are integers m and n such that g = am

and h = an. Then

gh = aman

= am+n

= an+m

= hg.

Thus G is abelian. Hence (1).
(2) and (3) follow from (9.1). �

Note that we can easily write down a cyclic group of order n. The
group of rotations of an n-gon forms a cyclic group of order n. Indeed
any rotation may be expressed as a power of a rotation R through
2π/n. On the other hand, Rn = 1.

However there is another way to write down a cyclic group of order
n. Suppose that one takes the integers Z. Look at the subgroup nZ.
Then we get equivalence classes modulo n, the left cosets.

[0], [1], [2], [3], . . . , [n− 1].

I claim that this is a group, with a natural method of addition. In
fact I define

[a] + [b] = [a+ b].

in the obvious way. However we need to check that this is well-defined.
The problem is that the notation

[a]

is somewhat ambiguous, in the sense that there are infinitely many
numbers a′ such that

[a′] = [a].
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In other words, if the difference a′−a is a multiple of n then a and a′

represent the same equivalence class. For example, suppose that n = 3.
Then [1] = [4] and [5] = [−1]. So there are two ways to calculate

[1] + [5].

One way is to add 1 and 5 and take the equivalence class. [1] + [5] =
[6]. On the other hand we could add 4 and −1 to get 3, [1] + [5] =
[4] + [−1] = [3]. Of course [6] = [3] = [0], so we are okay.

So now suppose that a′ is equal to a modulo n and b′ is equal to b
modulo n. This means

a′ = a+ pn

and
b′ = b+ qn,

where p and q are integers.
Then

a′ + b′ = (a+ pn) + (b+ qn) = (a+ b) + (p+ q)n.

So we are okay
[a+ b] = [a′ + b′],

and addition is well-defined. The set of left cosets with this law of
addition is denoted Z/nZ, the integers modulo n. Is this a group?
Well associativity comes for free. As ordinary addition is associative,
so is addition in the integers modulo n.

[0] obviously plays the role of the identity. That is

[a] + [0] = [a+ 0] = [a].

Finally inverses obviously exist. Given [a], consider [−a]. Then

[a] + [−a] = [a− a] = [0].

Note that this group is abelian.
How about the integers modulo n under multiplication? There is an

obvious choice of multiplication.

[a] · [b] = [a · b].
Once again we need to check that this is well-defined. Exercise left

for the reader.
Do we get a group? Again associativity is easy, and [1] plays the

role of the identity. Unfortunately, inverses don’t exist. For example
[0] does not have an inverse. The obvious thing to do is throw away
zero. But even then there is a problem. For example, take the integers
modulo 4. Then

[2] · [2] = [4] = [0].
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So if you throw away [0] then you have to throw away [2]. In fact
given n, you should throw away all those integers that are not coprime
to n, at the very least. In fact this is enough.

Definition-Lemma 9.4. Let n be a positive integer.
The group of units, Un, for the integers modulo n is the subset of

Z/nZ of integers coprime to n, under multiplication.

Proof. We check that Un is a group.
First we need to check that Un is closed under multiplication. Sup-

pose that [a] ∈ Un and [b] ∈ Un. Then a and b are coprime to n.
This means that if a prime p divides n, then it does not divide a or
b. But then p does not divide ab. As this is true for all primes that
divide n, it follows that ab is coprime to n. But then [ab] ∈ Un. Hence
multiplication is well-defined.

This rule of multiplication is clearly associative. Indeed suppose that
[a], [b] and [c] ∈ Un. Then

([a] · [b]) · [c] = [ab] · c
= [(ab)c]

= [a(bc)]

= [a] · [bc]
= [a] · ([b] · [c]).

So multiplication is associative.
Now 1 is coprime to n. But then [1] ∈ Un and this clearly plays the

role of the identity.
Now suppose that [a] ∈ Un. We need to find an inverse of [a]. We

want an integer b such that

[ab] = 1.

This means that

ab+mn = 1,

for some integers b and m. But a and n are coprime. So by Euclid’s
algorithm, such integers exist. �

Definition 9.5. The Euler ϕ function is defined to be the order of
Un.

Lemma 9.6. Let a be any integer, which is coprime to the positive
integer n.

Then aϕ(n) = 1 mod n.
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Proof. Let g = [a] ∈ Un. By (9.2) gϕ(n) = e. But then

[aϕ(n)] = [1].

Thus
aϕ(n) = 1 mod n. �

Given this, it would be really nice to have a quick way to compute
ϕ(n).

Lemma 9.7. The Euler ϕ function is multiplicative.
That is, if m and n are coprime positive integers,

ϕ(mn) = ϕ(m)ϕ(n).

Proof. We will prove this later in the series. �

Given (9.7), and the fact that any number can be factored, it suffices
to compute ϕ(pk), where p is prime and k is a positive integer.

Consider first ϕ(p). Well every number between 1 and p− 1 is auto-
matically coprime to p. So ϕ(p) = p− 1.

Theorem 9.8. (Fermat’s Little Theorem) Let a be any integer. Then
ap = a mod p. In particular ap−1 = 1 mod p if a is coprime to p.

Proof. Follows from (9.6). �

How about ϕ(pk)? Let us do an easy example.
Suppose we take p = 3, k = 2. Then of the nine numbers between 1

and 9, three are multiples of 3, 3, 6 = 2 ·3 and 9 = 3 ·3. More generally,
if a number between 1 and pk is not coprime to p, then it is a multiple
of p. But there are pk−1 such multiples,

p = 1 · p, 2p, 3p, . . . (pk−1 − 1)p, pk = pk−1 · p.
Thus pk−pk−1 numbers between 1 and pk are coprime to p. We have

proved

Lemma 9.9. Let p be a prime number. Then

ϕ(pk) = pk − pk−1.

Example 9.10. What is the order of U5000?

First we factor 5000,

5000 = 5 · 1000 = 5 · (10)3 = 54 · 23.

Now
ϕ(23) = 23 − 22 = 4,

and
ϕ(54) = 54 − 53 = 53(4) = 125 · 4.
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As the Euler-phi function is multiplicative, we get

ϕ(5000) = 4 · 4 · 125 = 2000.

It is also interesting to see what sort of groups one gets. For example,
what is U6?
ϕ(6) = ϕ(2)ϕ(3) = 1 · 2 = 2. Thus we get a cyclic group of order 2.

In fact 1 and 5 are the only numbers coprime to 6.

52 = 24 = 1 mod 6.

How about U8? Well
ϕ(8) = 4.

So either U8 is either cyclic of order 4, or every element has order 2.
1, 3, 5 and 7 are the numbers coprime to 2. Now

32 = 9 = 1 mod 8,

52 = 25 = 1 mod 8,

and
72 = 49 = 1 mod 8.

So
[3]2 = [5]2 = [7]2 = [1]

and every element of U8, other than the identity, has order two. But
then U8 cannot be cyclic.

In particular there are exactly two groups of order 4.
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