
7. Cosets

Consider the group of integers Z under addition. Let H be the
subgroup of even integers. Notice that if you take the elements of H
and add one, then you get all the odd elements of Z. In fact if you take
the elements of H and add any odd integer, then you get all the odd
elements.

On the other hand, every element of Z is either odd or even, and
certainly not both (by convention zero is even and not odd), that is,
we can partition the elements of Z into two sets, the evens and the
odds, and one part of this partition is equal to the original subset H.

Somewhat surprisingly, this rather trivial example generalises to the
case of an arbtirary group G and subgroup H and in the case of finite
groups imposes rather strong conditions on the size of a subgroup.

To go further, we need to recall some basic facts about partitions
and equivalence relations.

Definition 7.1. Let X be a set. An equivalence relation ∼ is a
relation on X, which is

reflexive: For every x ∈ X, x ∼ x.
symmetric: For every x and y ∈ X, if x ∼ y then y ∼ x.
transitive: For every x and y and z ∈ X, if x ∼ y and y ∼ z then x ∼ z.

Lemma 7.2. Let G be a group and let H be a subgroup. Let ∼ be the
relation on G defined by the rule

a ∼ b if and only if b−1a ∈ H.

Then ∼ is an equivalence relation.

Proof. There are three things to check.
First we check reflexivity. Suppose that a ∈ G. Then a−1a = e ∈ H,

since H is a subgroup. But then a ∼ a by definition of ∼ and ∼ is
reflexive.

Now we check symmetry. Suppose that a and b are elements of G
and that a ∼ b. Then b−1a ∈ H. As H is closed under taking inverses,
(b−1a)−1 ∈ H. But

(b−1a)−1 = a−1(b−1)−1

= a−1b.

Thus a−1b ∈ H. But then by definition b ∼ a. Thus ∼ is symmetric.
Finally we check transitivity. Suppose that a ∼ b and b ∼ c.

Then b−1a ∈ H and c−1b ∈ H. As H is closed under multiplication
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(c−1b)(b−1a) ∈ H. On the other hand

(c−1b)(b−1a) = c−1(bb−1)a

= c−1(ea)

= c−1a.

Thus c−1a ∈ H. But then a ∼ c and ∼ is transitive.
As ∼ is reflexive, symmetric and transitive, it is an equivalence re-

lation. �

On the other hand if we are given an equivalence relation, the natural
thing to do is to look at its equivalence classes.

Definition 7.3. Let ∼ be an equivalence relation on a set X. Let
a ∈ X be an element of X. The equivalence class of a is

[a] = { b ∈ X | b ∼ a }.

Definition 7.4. Let X be a set. A partition P of X is a collection
of non-empty subsets Ai, i ∈ I, such that

(1) The Ai cover X, that is⋃
i∈I

Ai = X.

(2) The Ai are pairwise disjoint, that is, if i 6= j then

Ai ∩ Aj = ∅.

Lemma 7.5. Given an equivalence relation ∼ on X there is a unique
partition of X. The elements of the partition are the equivalence classes
of ∼ and vice-versa. That is, given a partition P of X we may construct
an equivalence relation ∼ on X such that the partition associated to ∼
is precisely P .

Concisely, the data of an equivalence relation is the same as the data
of a partition.

Proof. Suppose that ∼ is an equivalence relation. Note that x ∈ [x]
as x ∼ x. Thus certainly the set of equivalence classes covers X. The
only thing to check is that if two equivalence classes intersect at all,
then in fact they are equal.

We first prove a weaker result. We prove that if x ∼ y then [x] =
[y]. Since y ∼ x, by symmetry, it suffices to prove that [x] ⊂ [y].
Suppose that a ∈ [x]. Then a ∼ x. As x ∼ y it follows that a ∼ y,
by transitivity. But then a ∈ [y]. Thus [x] ⊂ [y] and by symmetry
[x] = [y].
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So suppose that x ∈ X and y ∈ X and that z ∈ [x] ∩ [y]. As
z ∈ [x], z ∼ x. As z ∈ [y], z ∼ y. But then by what we just proved
[x] = [z] = [y].

Thus if two equivalence classes overlap, then they coincide and we
have a partition.

Now suppose that we have a partition

P = {Ai | i ∈ I }.

Define a relation ∼ on X by the rule that x ∼ y if and only if x ∈ Ai

and y ∈ Ai (same i of course). That is, x and y are related if and only
if they belong to the same part. It is straightforward to check that this
is an equivalence relation, and that this process reverses the one above.
Both of these things are left as an exercise to the reader. �

Example 7.6. Let X be the set of integers.

Define an equivalence relation on Z by the rule x ∼ y if and only if
x− y is even.

Then the equivalence classes of this relation are the even and odd
numbers.

More generally, let n be an integer, and let nZ be the subset consist-
ing of all multiples of n,

nZ = { an | a ∈ Z }.

Since the sum of two multiples of n is a multiple of n,

an + bn = (a + b)n

and the inverse of a multiple of n is a multiple of n,

−(an) = (−a)n,

nZ is closed under multiplication and inverses. Thus nZ is a subgroup
of Z.

The equivalence relation corresponding to nZ becomes a ∼ b if and
only if a−b ∈ nZ that is a−b is a multiple of n. There are n equivalence
classes,

[0], [1], [2], [3], . . . [n− 1].

Definition-Lemma 7.7. Let G be a group and let H be a subgroup.
Let g ∈ G. Then

[g] = gH = { gh |h ∈ H }.
gH is called a left coset of H.
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Proof. Suppose that k ∈ [g]. Then k ∼ g and so g−1k ∈ H. So if we
set h = g−1k, then h ∈ H. But then k = gh ∈ gH. Thus [g] ⊂ gH.

Now suppose that k ∈ gH. Then k = gh for some h ∈ H. But then
h = g−1k ∈ H. By definition of ∼, k ∼ g. But then k ∈ [g]. �

In the example above, we see that the left cosets are

[0] = { an | a ∈ Z }
[1] = { an + 1 | a ∈ Z }
[2] = { an + 2 | a ∈ Z }

...

[n− 1] = { an− 1 | a ∈ Z }.
It is interesting to see what happens in the case G = D3. Suppose

we take H = {I, R,R2}. Then

[I] = H = {I, R,R2}.
Pick F1 /∈ H. Then

[F1] = F1H = {F1, F2, F3}.
Thus H partitions G into two sets, the rotations, and the flips,

{{I, R,R2}, {F1, F2, F3}}.
Note that both sets have the same size.

Now suppose that we take H = {I, F1} (up to the obvious symme-
tries, this is the only other interesting example).

In this case
[I] = IH = H = {I, F1}.

Now R is not in this equivalence class, so

[R] = RH = {R,RF1} = {R,F2}.
Finally look at the equivalence class containing R2.

[R2] = R2H = {R2, R2F1} = {R,F3}.
The corresponding partition is

{{I, F1}, {R,F2}, {R2, F3}}.
Note than once again, each part of the partition has the same size.
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