
24. Finite matrix groups

The aim of this section is to classify finite subgroups H of G =
GL(3,R), the group of 3× 3 invertible matrices with real entries.

Note that G acts on R3 in the obvious way, via matrix multiplication

G× R3 −→ R3 given by g · v = gv.

Suppose we are given a finite subgroup H of G. We will use the fact
that

Lemma 24.1. Every finite subgroup of GL(n,R) is conjugate to a sub-
group of O(n,R), the group of all orthogonal matrices.

We will prove this later. Note that the orthogonal group preserves
distances between vectors. Thus we may assume that H preserves
distances.

Note that there is a natural map

φ : G −→ R∗ given by g −→ det(g).

We have

φ(gh) = det(gh)

= det(g) det(h)

= φ(g)φ(h),

so that φ is a group homomorphism. Orthogonal matrices have deter-
minant ±1.

Let v ∈ R3 be a non-zero vector and consider the orbit of v. We pick
v so that the linear span of the orbit has maximal dimension. There
are three cases.

The orbit of v lies in a line. We might as well take this line to be
the x-axis. If v = (1, 0, 0) then g · v = ±v. Thus H is a group of order
at most two. Thus H is either the trivial group or the group ±I3,
isomorphic to Z2. If we consider only transformations of determinant
one then we only get the identity.

Suppose that the orbit is planar, that is, the orbit lies in a plane.
We might as well take this plane to be the plane z = 0. In this case
the orbit of v lies on a circle of radius |v| = r. Thus we get a regular
n-gon, for some n ≥ 3.

If g fixes two non-collinear vectors in the plane z = 0 then g = I3.
Thus the action of H on the regular n-gon induces an embedding into
the symmetries of a regular n-gon. Thus H is isomorphic to a subgroup
of Dn. Rotations have determinant one and flips determinant −1.

By definition H acts transitively on the vertices of the n-gon. Thus
the order of H is at least n. If the order is 2n then H = Dn. Suppose
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that the order is n. Pick a vertex. Then the stabiliser must be trivial,
as the orbit of the vertex is equal to the order of H.

One obvious possiblity is that H consists of all rotations. Otherwise
H must contain flips. If n is odd then any flip fixes a vertex. Thus
n = 2m ≥ 4 is even. In this case all even powers of R and all flips
about a line through two sides form a subgroup H of Dn which acts
transitively on the n-gon:

H = { I, R2, R4, . . . , Rn−2, F1, F2, . . . , Fm }.

One needs to check that H is a subgroup, that is, H is closed under
products. Exercise for the reader.

Now finally suppose that the orbit is three dimensional. Then the
orbit is a regular solid, that is, the orbit is a Platonic solid. There are
five Platonic solids, the tetrahedron, cube, octahedron, dodecahedron
and the icosahedron. Platonic solids have duals. Given a platonic
solid put a vertex at the centre of every face to get another platonic
solid. Note that the dual of the dual is the original Platonic solid. The
tetrahedron is self-dual, the dual of the cube is the octahedron and the
dual of the dodecahedron is the icosahedron. It is clear that a Platonic
solid and its dual have the same symmetry group.

If g fixes three independent vectors then g is the identity. Thus H
is a subgroup of the symmetry group of the Platonic solid.

So we just need to find the symmetry groups of the tetrahedron,
cube and dodecahedron and find all of their transitive subgroups.

The tetrahedron has four vertices. Thus the symmetry group is a
subgroup of S4. Pick two vertices. This defines an edge and reflection
through the plane through the midpoint of this edge and the other two
vertices switches these two vertices and fixes the other two vertices.
This gives a transposition and so we get the whole of S4.

Suppose we only consider transformations of determinant one. Half
of the symmetries have determinant one and in fact they give a normal
subgroup of S4. Thus symmetries of determinant one give A4.

In fact if we fix a vertex then we can rotate about an axis through
the vertex through an angle of 2π/3. This gives a 3-cycle and we can
get any 3-cycle this way. The 3-cycles generate A4. Thus the subgroup
of all symmetries of determinant 1 is A4. This acts transitively on the
vertices of the tetrahedron.

Consider the possiblities for H. As H acts transitively on the vertices
its order is divisible by 4. Thus H has order 4, 8, 12 or 24.

If H has order 24 it is S4. If it has order 12 it is A4. Suppose
that H is a transitive subgroup of order 8. If every element of H
has order at most 2 then H is abelian. The elements of order two are
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transpositions and products of transpositions. There are three products
of transpositions. The remaining four elements must be transpositions
and they must be disjoint; this is simply not possible. Thus H contains
a 4-cycle. There are only three permutations which are the product of
two disjoint transpositions. Thus H contains a transposition.

Suppose the 4-cycle is (1, 2, 3, 4). If H contains (1, 2) we get the
whole of S4, not possible. If H contains (1, 3) then H contains five
elements of the symmetries of a square. ThusH contains all symmetries
of the square, so that H ' D4.

Finally suppose that H has order 4. If H contains a 4-cycle then it
is the subgroup generated by this 4-cycle. H cannot contain a transpo-
sition, since the stabiliser of any vertex is trivial. The only possibility
is that

H = V = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} ' Z2 × Z2.

In this case H ⊂ A4.
The cube has eight vertices. Let us first consider the symmetries H+

of determinant one.
Consider the stabiliser of a vertex. Then the opposite corner is fixed

as well. We can rotate the cube through an angle of 2π/3 about an
axis through those two vertices. This gives us three symmetries. Thus
the symmetry group of the cube has order 3 × 8 = 24. As a check
consider the stabiliser of face. There are six faces. If we fix the top
face then we have to fix the bottom face as well. We can then rotate
about a vertical axis through the centre of this pair of opposite faces
through an angle of π/2. Thus the symmetry group of the cube has
order 6 × 4 = 24. We can also consider the edges. The cube has 12
edges. If we fix an edge then we can simply swivel through an angle of
π through an axis through this edge and the diagonally opposite edge.
This gives us 12 · 2 = 24 symmetries.

It is natural to guess that the symmetry group of a cube is S4. After
a little bit of experimentation, one can proceed as follows. Note that
there are four diagonals, that connect opposite vertices of the cube. It is
clear that the symmetries of the cube act transitively on the diagonals.
Suppose that we fix a diagonal. Then we can rotate the cube through
an angle of 2π/3, as described above. This gives us three elements
of the stabiliser of a diagonal. Then we can switch the two opposite
vertices. This gives us at least 6 elements of the stabiliser. But then
this gives us 24 symmetries. Thus H+ is isomorphic to S4, realised as
the symmetries of the diagonals.

Note that the full symmetry group H of the cube contains reflection
r in the origin. This switches all diagonal vertices. Observe that this
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symmetry lies in the centre. This is geometrically clear (relabelling the
vertices won’t change the fact that we are simply reflecting in the ori-
gin) and even clearer algebraically, since this symmetry is represented
by the matric −I3, and this matrix lies in the centre of G = GL(3,R).

This gives us two normal subgroups. R ' Z2 generated by r and
H+ ⊂ H which has index two (or is the kernel of the determinant).
R ∩H+ is the trivial group and R commutes with H+. Thus

H ' H+ ×R ' S4 × Z2.

Consider transitive subgroups T . The cube has eight vertices and so
any transitive subgroup must have 8, 16, 24 or 48 elements. If there
are 48 elements then we get T = H ' S4 × Z2.

Suppose that T has index two. Consider T+ = T ∩H+. If T+ = H+

then T = H+ ' S4. Otherwise T+ ⊂ T ' S4 has index two. But then
T+ ' A4.

Two subgroups of index 2 are S4 and A4 × Z2.
Now consider the dodecahedron. As before consider H+ the symme-

tries of the dodecahedron which have determinant one. This has 20
vertices. If one fixes a vertex then one has to fix the opposite vertex
and we can rotate the dodecahedron through an angle of 2π/3 about
this axis. Thus the order of the symmetry group is 20 · 3 = 60. As
a check there are 12 faces. If one fixes a face then one has to fix the
opposite face. One can rotate through an angle of 2π/5 about the line
through the centre of opposite faces. This gives us 12 · 5 = 60 symme-
tries. Finally there are 5 · 12/2 = 30 edges. If one fixes an edge then
one has to fix the opposite edge and all one can do is rotate through
an angle of π about an axis through the centre of opposite edges. This
gives us 30 · 2 = 60 symmetries.

It is natural to guess that H+ is isomorphic to A5. There are 30
edges. One can group these into five groups of six, as follows. Suppose
that e is an edge. Pick a face to which e belongs. This gives a pentagon
of which e is one side. Let f be the edge that does not belong to this
pentagon that goes through the vertex opposite e.

Let ∼ be the equivalence relation generated by this relation: e ∼ e′

if we can find e1, e2, . . . , en such that e = e1, ei and ei+1 are related
as described above and e′ = en. The corresponding partition has five
equal partitions of cardinality 6.

This gives us a representation

ρ : H+ −→ S5
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It is not hard to check that symmetry that fixes the five parts of the
partition must be the identity, so that the kernel is trivial. The image
is a subgroup of index 2; it must be A5.

Note that the full symmetry group contains R so that arguing as
before we must have

H ' H+ ×R ' A5 × Z2.

Definition 24.2. Let G be a group.
We say that G has the Jordan property if there is an integer k > 0

with following property:
If H ⊂ G is any finite subgroup then there an abelian subgroup A ⊂

H whose index is at most k.

Note that if the index is at most k then H is somehow close to an
abelian group.

Theorem 24.3 (Jordan). GL(n,R) has the Jordan property.

Let’s check Jordan’s result for n = 1, 2 and 3.

GL(1,R) ' R∗,
the non-zero reals under multiplication. This is abelian and so we can
take k = 1. In fact we already saw that the biggest finite subgroup is
{±1}.

Now suppose n = 2. If H ⊂ GL(2,R) is a finite subgroup then we
already saw that H ⊂ Dn. It is pretty clear the worse case is when
H = Dn.

In this case the group of rotations is an abelian subgroup of index 2.
Thus GL(2,R) is Jordan and we can even take k = 2.

Now suppose n = 3. The only remaining cases are the symmetry
groups of the Platonic solids. There are only finitely many of these,
so we could just take the maximum order (120). But we can do much
better than this.

The symmetry group of the tetrahedron is S4. This is not abelian.
A4 is not abelian either. Nor is D4. But V is abelian and this has index
6. So k = 6 works.

The symmetry group of the cube is S4 × Z2. The Z2 plays no role
(exercise for the reader). So we are down to S4, and we already saw
that k = 6 works.

The symmetry group of the dodecahedron is A5 × Z2. The factor of
Z2 plays no role, as before. A5 is not abelian. It contains a group of
order 5, which is abelian. The index is 12. One cannot do better than
this.

Thus k = 12 is the optimal value.
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