
23. Sylow theorems

We prove the Sylow theorems.
To warm up we will first prove that the only simple p-groups have

prime power order. We will need:

Theorem 23.1 (Class equation). Let G be a finite group. Let C1, C2, . . . , Ck

be the conjugacy classes with more than one element. Pick representa-
tives c1, c2, . . . , ck of each conjugacy class, so that ci ∈ Ci.

Then

|G| = |Z(G)|+
k∑

i=1

[G : Cci ].

Proof. Let G act on itself by conjugation. The orbits are the conjugacy
classes and these give a partition of G. In particular the sum of the
cardinalities of the conjugacy classes is the cardinality of G.

Let O be an orbit of G, so that O = C is a conjugacy class. Suppose
that c ∈ O. The stabiliser H of c is the set of elements g ∈ G such that

c = g · c
= gcg−1.

But then cg = gc so that the stabiliser of c is precisely the centraliser
of c,

H = Cc = { g ∈ G | gc = cg }.
The cardinality of O is then precisely the index of H. In particular O
has one element c if and only if G = Cc if and only if c commutes with
everything if and only if c belongs to the centre Z of G.

Thus if we group together the one element conjugacy classes we get
the centre Z. �

Lemma 23.2. Every subgroup of the centre Z of a group G is normal
in G.

Proof. Suppose that H ⊂ Z(G) is a subgroup. Pick g ∈ G. Then g
commutes with every element of H, so that

gHg−1 = H. �

Proof of (21.8). We first prove (1). Suppose that q = |G| = pd.
Consider the class equation

|G| = |Z|+
k∑

i=1

[G : Cci ].

Every term in the sum has cardinality at least two and divides q. Thus
every term in the sum is divisible by p. The LHS is also divisible by
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p. It follows that the order of the centre is divisible by p. But then
|Z| > 1.

We now turn to (2). By the classification of finitely generated abelian
groups the centre contains a subgroup H of order p. But then H is
normal in G, by (23.2). Let

G′ = G/H

be the quotient group. Then G′ is a p-group and its order is less than
the order of G. By induction G′ contains a nested sequence of normal
subgroups of every order dividing the order of G′,

{e} = K1 ⊂ K2 ⊂ · · · ⊂ Kd = G′.

Now take the inverse image of these subgroups

Gi = γ−1(Ki)

under the natural homomorphism

γ : G −→ G′,

to get
{e} = G0 ⊂ G1 ⊂ · · · ⊂ Gk = G. �

As the Sylow theorem is so fundamental, we give three different
proofs of (21.3). Perhaps the most important step is to establish the
existence of a single Sylow p-subgroup.

To give the first proof, we start with an easy:

Lemma 23.3. Let p be a prime, let m be a positive integer coprime to
p and let n = pkm.

Then (
n

pk

)
.

is coprime to p.

Proof. Expanding top and bottom of the binomial, the only terms on
the top divisible by p are of the form n − api = pi(pk−im − a), where
a is coprime to p, in which case the corresponding term pk − api =
pi(pk−i − a) on the bottom, exactly cancels the factor of pi. �

First proof of existence. Let S be the set of all subsets of G of order
pk, and let G act on S by left translation,

G× S −→ S given by g · A = gA.

By (23.3) the order of S is coprime to p. It follows that there must
be an orbit T whose cardinality is coprime to p. Pick an element A of
T . If a ∈ A then e ∈ a−1A belongs to T .
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Hence we may assume that e ∈ A. Let H be the stabiliser of A.
Then

h = he

= h · e ∈ hA = A.

It follows that H ⊂ A. As the cardinality of the orbit T is equal to the
index of H, pk must divide the order of H. The only possiblity is that
H = A, in which case H is a Sylow p-subgroup. �

The following might explain the proof above and it is also a useful
observation:

Lemma 23.4. The Sylow p-subgroups are all stabilisers of elements of
S.

Proof. Let P be a Sylow p-subgroup. Then P ∈ S. Let H be the
stabiliser of P . Then P ⊂ H as P is a subgroup and H ⊂ P as e ∈ P .
Thus P = H is a stabiliser. �

First proof of (21.31.1-2). It suffices to prove that given any p-subgroup
H and we may find g ∈ G such that H ⊂ gPg−1. Consider an orbit T
of the action of G on the subsets of cardinality pk, whose cardinality is
coprime to p.

Consider the action of H on T by left translation

H × T −→ T given by h · A = hA.

Consider the orbits of this action. Since any such orbit has cardinality a
power of p, it follows that there must be an orbit of cardinality one. Let
A be the corresponding subset of cardinality pk. Let Q be the stabiliser
of A under the action of G. Clearly H ⊂ Q. But any two stabilisers
are conjugate and P is a stabiliser by (23.4), so that Q = gPg−1, for
some g ∈ G. �

First proof of (21.3.3). Let S be the set of Sylow p-subgroups. Then
G acts on S by conjugation

G× S −→ S given by g ·Q = gQg−1.

By (21.3.2), this is action is transitive. In particular the cardinality of
S divides n.

Pick a Sylow p-subgroup P and let P act on S by conjugation

P × S −→ S given by g ·Q = gQg−1.
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Suppose that Q is its own orbit. Then

Q = g ·Q
= gQg−1,

for all g ∈ P . Thus P ⊂ N = NG(Q). But Q is normal in N , and
any two Sylow p-subgroups of N are conjugate in N . Thus P = Q and
there is only one orbit of size one. But the other orbits have cardinality
divisible by p. �

We now turn to the second proof:

Second proof of existence. We may assume by induction on the order
of G, that for every subgroup K of G, pk does not divide the order of
K. In other words the index of any subgroup is divisible by p.

We consider the class equation for G:

|G| = |Z(G)|+
∑
i

[G : Cci ].

Cci is a subgroup of G and so every term in the sum is divisible by p.
It follows that the order of the centre is divisible by p.

By the classification of finitely generated abelian groups the centre
contains a subgroup K of order p. But then K is normal in G, by (23.2).
Consider G/K. By induction this contains a Sylow p-subgroup K ′, and
the inverse image under the quotient map is a Sylow p-subgroup. �

The rest of the proof proceeds as in the first proof.
The third proof of existence is quite novel. We include its proof for

completeness but it will not be presented in class.
The idea is to embed G into a much larger group M , show that M

contains Sylow p-subgroups and from there deduce that G also contains
Sylow p-subgroups. The larger group will be Spl , for some large positive
integer l. So we first need to determine the order of a Sylow p-subgroup
of Spl .

Lemma 23.5. Let x = n(l) denote the index of the largest power of p
dividing (pl)!.

Then

n(l) = 1 + p+ · · ·+ pl−1.

Proof. The proof proceeds by induction on l. The case l = 1 is easy.
Now the terms of the expansion of (pl)! divisible by p are precisely

p, 2p, . . . , pl−1p. In other words n(l) is the exponent of

p(2p)(3p) . . . (pl−1p) = pp
l−1

(pl−1)!,
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so that

n(l) = pl−1 + n(l − 1). �

Lemma 23.6. Let G be a group, and let H1, H2, . . . , Hk be a sequence
of pairwise commuting subgroups. Let Mi be the subgroup generated by
H1, H2, . . . , Hi−1 and let H = Mk+1.

If Mi and Hi have trivial intersection then

H = H1H2 . . . Hk ' H1 ×H2 × · · · ×Hk.

In particular

|H| =
k∏

i=1

|Hi|.

Proof. We proceed by induction on k. Let K = Mk. Note that Hk

commutes with K, that

K = H1H2 . . . Hk−1

by induction on k and that by assumption K∩Hk = {e}. Therefore we
may assume that k = 2 in which case this is a homework problem. �

Remark 23.7. It is not enough for the subgroups H1, H2, . . . , Hk to be
pairwise disjoint as Herstein seems to suggest in the book “Topics in
Algebra”.

For example, let G = Z2 × Z2. Then the three subgroups of order 2
are pairwise disjoint and commute but the group they generate is G,
which has order 4 and not 8.

Lemma 23.8. The symmetric group of order pl contains a Sylow p-
subgroup.

Proof. By induction on l. If l = 1, then take P to be any subgroup
generated by the p-cycle (1, 2, . . . , p).

Now suppose that l > 1. Let

H = { τ ∈ Spl | τ(i) = i,∀i > pl−1 }.
ThenH is a subgroup which is clearly isomorphic to Spl−1 . By induction
H contains a Sylow p-subgroup P1.

Let

σi = (i, i+ pl−1, i+ 2pl−1, i+ (p− 1)pl−1) for 1 ≤ i ≤ pl−1

and let σ be the product of the σi. Then σ is a product of pl−1 disjoint
p-cycles. Let

Pi = σjPσ−j where j = i− 1.
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Note that Pi ⊂ Hi = σjHσ−j, which is the subgroup of permutations
that fix everything outside the interval [jpk + 1, (j + 1)pk].

Note that the subgroups P1, P2, . . . , Pp commute and if Ti is the group
generated by P1, P2, . . . , Pi−1 then Ti commutes with Pi. Therefore

|T | =
p∏

i=1

|Pi| = |Pi|p = ppn(l−1),

where T is the group generated by P1, P2, . . . , Pp. Finally let P be the
group generated by σ and T . Note that T is invariant under conjugation
by σ, so P is a disjoint union of σiT . In particular the order of T is
pp(n(l−1))+1 = pn(l). But then P is a Sylow p-subgroup. �

Example 23.9. Take p = l = 2, so that we are looking at S4.

We take P1 = 〈(1, 2)〉 and σ = (1, 3)(2, 4). In this case P2 = 〈(3, 4)〉.
Then T = 〈(1, 2), (3, 4)〉 and

P = 〈(1, 2, 3, 4), (1, 2), (3, 4)〉
= {e, (3, 4), (1, 3)(2, 4), (1, 3, 2, 4), (1, 2), (1, 2)(3, 4), (1, 4, 2, 3), (1, 4)(2, 3)}
' D4.

is the group generated by T and σ.

Definition-Lemma 23.10. Let G be a group and let A and B be two
subgroups of G. Define a relation ∼ by the rule,

x ∼ y if and only if y = axb for some a ∈ A, b ∈ B.
Then ∼ is an equivalence relation and the equivalence classes are of the
form AxB, for x ∈ G, known as double cosets

Proof. Exercise for the reader. �

Lemma 23.11. Let A and B be two subgroups of a group G.
Then

|AB| = |A||B|
|A ∩B|

.

Proof. Define a map

f : A×B −→ AB by sending (a, b) −→ ab.

This map is clearly surjective. Suppose that z ∈ A ∩ B. Then
f(az, z−1b) = f(a, b). Conversely, if ab = cd then

z = a−1c = bd−1 ∈ A ∩B.
Then c = az and d = z−1b. Thus the inverse images of f all have
cardinality A ∩B. �
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Lemma 23.12. Let G be a group and let A and B be two subgroups of
G.

Then

|AxB| = |A||B|
|A ∩ xBx−1|

.

Proof. Let C = xBx−1. Note

AxBx−1 = AC.

Define a function

f : AxB −→ AC by the rule g −→ gx−1.

Then f is clearly a bijection. Then

|AxB| = |AC|

=
|A||C|
|A ∩ C|

=
|A||B|

|A ∩ xBx−1|
. �

Lemma 23.13. Let G ⊂M be a subgroup of the finite group M .
If M has a Sylow p-subgroup Q then G has a Sylow p-subgroup P ,

of the form G ∩ xQx−1, for some x ∈M .

Proof. Suppose that |G| = pam and |M | = pbm′, where m and m′ are
coprime to p. Consider the decomposition of M into the double cosets
of Q and G. Now

|GxQ| = pa+bm

|Px|
,

where Px = G ∩ xQx−1. Since Px ⊂ xQx−1, it follows that Px is a p-
group. Suppose that |Px| = pmx < pa, for every x. Then every orbit is
divisible by pb+1. This is not possible, as the order of M is not divisible
by pb+1.

Thus P = Px is a Sylow p-subgroup for some x. �

Third proof of (1) of (2.13). Let G be a finite group. By Cayley’s The-
orem, we may embed G inside Sn. Since Sn embeds in Spl for l large
enough, it follows that we may embed G into Spl , for l sufficiently large.
Now apply (23.13) and (23.8). �

Third proof of (2) of (21.3). Let P and Q be two Sylow p-subgroups
of order p. Consider the decomposition of G into the double cosets of
P and Q. Then the order of an orbit is

|PxQ| = p2k

|P ∩ xQx−1|
= pmx ,
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for some integer mx. But for some x ∈ G, we must have mx < k + 1,
so that |P ∩ xQx−1| ≥ pk. The only way that this can happen is if
P = xQx−1. �

Third proof of (3) of (21.3). As in the first proof, it suffices to prove
that the number of Sylow p-subgroups is congruent to one modulo p.
Consider the action of G on its Sylow p-subgroups. By (2) this action
is transitive. Let P be a Sylow p-subgroup. Then the number of Sylow
p-subgroups is equal to the index of the stabiliser of P . Thus it suffices
to prove that the index of the normaliser N = NG(P ) is congruent to
one modulo p.

Consider the double cosets PxP . We have

|PxP | = p2k

|P ∩ xPx−1|
.

Thus |PxP | ≥ pk with equality if and only if P = xPx−1, so that
x ∈ N . Thus

|G| =
∑
x∈N

|PxP |+
∑
x/∈N

|PxP |,

where the sum ranges over a representative of each double coset and
second sum is divisible by pk+1. Now if x ∈ N , then

PxP = xP

Thus the sum ranges over the set of left cosets of P in N , and it follows
that the first sum is precisely |N |. Dividing both sides by |N |, we get

[G : N ] = 1 + x,

where x is an integer, which is divisible by p. �
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