22. Group actions

Even though one defines a group abstractly the only sensible way to think about a group is as a group of symmetries, or what comes to the same thing, as a group of permutations.

Group actions are to permutations as equivalence relations are to partitions. Even if we are really only interested in realising a group as a permutation group, group actions are much easier to manipulate, even though the data of a group action is the same as the data of a group homomorphism.

Definition 22.1. Let S be a set and let G be a group. A group action is a function

$$G \times S \longrightarrow S$$
 given as $(g,s) \longrightarrow g \cdot s$

that satisfies

(1) For every $s \in S$ we have

$$e \cdot s = s$$
.

(2) For every $s \in S$ and $q, h \in G$.

$$(gh) \cdot s = g \cdot (h \cdot s).$$

In words, the identity of G acts as the identity on S and to apply gh is the same as to first apply h and then to apply g.

Definition-Lemma 22.2. Suppose the group G acts on the set S.

Define an equivalence relation \sim on S by the rule $a \sim b$ if and only if there is an element $g \in G$ such that $g \cdot a = b$.

Proof. We have to check that \sim is reflexive, symmetric and transitive. If $s \in S$ then $e \cdot s = s$ so that $s \sim s$ and \sim is reflexive.

If s and $t \in S$ and $s \sim t$ then we may find $g \in G$ such that $g \cdot s = t$. In this case

$$g^{-1} \cdot t = g^{-1} \cdot (g \cdot s)$$
$$= (g^{-1}g) \cdot s$$
$$= e \cdot s$$
$$= s.$$

Thus $t \sim s$ and \sim is symmetric.

Now suppose $r \sim s$ and $s \sim t$. Then we may find g and $h \in G$ such that $g \cdot r = s$ and $h \cdot s = t$. In this case

$$(gh) \cdot r = g \cdot (h \cdot r)$$
$$= g \cdot s$$
$$= t.$$

Thus $r \sim t$ and \sim is transitive.

Note that in the course of the proof we saw that g^{-1} acts as the inverse of q.

Definition 22.3. The equivalence classes of the equivalence relation above are called **orbits**.

The action is called **transitive** if there is one orbit.

Proposition 22.4. Let G be a group and let S be a set.

The data of an action of G on S is the same as the data of a **representation**, a group homomorphism

$$\phi \colon G \longrightarrow A(S).$$

Proof. Suppose we are given an action of G in S. If we fix g then we get a function

$$\sigma: S \longrightarrow S$$
 given by $\sigma(s) = q \cdot s$.

It is easy to see that the inverse of σ is given by the action of g^{-1} . Thus $\sigma \in A(S)$ is a permutation of S. This gives us a function

$$\phi \colon G \longrightarrow A(S)$$
 given by $\phi(g) = \sigma$.

Suppose that g and $h \in G$ and let $\sigma = \phi(g)$, $\tau = \phi(h)$ and $\rho = \phi(gh)$. We check that

$$\rho = \tau \sigma$$
.

Both sides are permutations of S and so it suffices to show they have the same effect on an element $s \in S$. We have

$$\rho(s) = (gh) \cdot s$$

$$= g \cdot (h \cdot s)$$

$$= g \cdot (\sigma(s))$$

$$= \tau(\sigma(s))$$

$$= (\tau \circ \sigma)(s)$$

$$= (\tau \sigma)(s).$$

Thus ϕ is a group homomorphism and we get a representation.

Now suppose we are given a representation, a group homomorphism

$$\phi \colon G \longrightarrow A(S).$$

Define an action

$$G \times S \longrightarrow S$$
 by the rule $q \cdot s = \phi(q)(s)$.

It is straightforward to check that we do get an action and going backwards and forwards from action to representation are inverses to each other. \Box

Example 22.5. D_n acts on the vertices of a regular n-gon.

The action is the obvious one and the action is transitive. The corresponding representation is the standard one.

There are two natural ways a group acts on itself.

Example 22.6. Let G be a group.

G acts on the set G by left translation

$$G \times G \longrightarrow G$$
 given by $g \cdot s = gs$.

The action is transitive. The corresponding representation is the one given by Cayley's theorem.

More generally, let H be a subgroup of G. Then G acts on the left cosets S of H in G in the obvious way

$$G \times S \longrightarrow S$$
 given by $g \cdot (aH) = (ga)H$.

The action is transitive.

Example 22.7. Let G be a group.

G acts on itself by conjugation

$$G \times G \longrightarrow G$$
 given by $g \cdot s = gsg^{-1}$.

Note that the orbits are precisely the conjugacy classes of G.

One key property of group actions is that it is easy to count the size of an orbit:

Definition-Lemma 22.8. Suppose the group G acts on the set S. Suppose that $s \in S$.

The **stabiliser** of s, denoted Stab(s), is the subgroup

$$H = \{ g \in G \mid g \cdot s = s. \}$$

Let O be the orbit of s. Then

$$|O|=[G:H].$$

In words the cardinality of the orbit of s is simply the index of the stabiliser of s.

In particular the cardinality of an orbit divides the order of G.

Proof. We first check that H is a subgroup.

H is non-empty as $e \in H$. We check that H is closed under products and inverses.

Suppose that g and $h \in H$. We have

$$(gh) \cdot s = g \cdot (h \cdot s)$$
$$= g \cdot s$$
$$= s.$$

Thus $gh \in H$ and H is closed under products.

Now suppose that $g \in H$. Then $g \cdot s = s$ so that $g^{-1} \cdot s = s$. Thus $g^{-1} \in H$ and H is closed under inverses. Thus H is a subgroup.

Define a function

$$f: G \longrightarrow S$$
 by the rule $f(g) = g \cdot s$.

The image of f is the orbit O of s. Define a relation \sim on G by the rule $a \sim b$ if and only if f(a) = f(b).

Claim 22.9. $a \sim b$ if and only if $a^{-1}b \in H$.

Proof of (22.9).

$$a \sim b$$
 if and only if $f(a) = f(b)$ if and only if $a \cdot s = b \cdot s$ if and only if $a^{-1} \cdot (b \cdot s) = s$ if and only if $(a^{-1}b) \cdot s = s$ if and only if $a^{-1}b \in H$.

Note that the relation $a \sim b$ if and only if $a^{-1}b \in H$ is the relation used to define the left cosets of H in G. It follows that the inverse image of point of O is simply a left coset, which has cardinality the order of H. Thus the number of elements of G is precisely

$$|G| = |O| \cdot |H|.$$

Dividing by |H| and using Lagrange we get

$$|O| = [G:H].$$

Example 22.10. Suppose that $G = D_n$ and S is the set of vertices of a regular n-gon.

Fix a vertex a. No rotation fixes a but there is one flip that fixes a (it is the flip that either goes through the opposite vertex, if n is even,

or the opposite edge if n is odd). Thus the stabiliser H of a has two elements.

The action is transitive and S has n elements. On the other hand D_n has 2n elements, so that the index of H is also n, as expected.

We will need another easy result about group actions:

Lemma 22.11. Suppose that G acts on the set S.

If
$$g \cdot s = t$$
 then

$$\operatorname{Stab}(t) = g \operatorname{Stab}(s) g^{-1}.$$

Proof. We show that the RHS is contained in the LHS. Suppose that $h \in \text{Stab}(s)$. We have

$$(ghg^{-1}) \cdot t = (ghg^{-1}) \cdot (g \cdot s)$$

$$= (gh) \cdot ((g^{-1}g) \cdot s)$$

$$= (gh) \cdot (e \cdot s)$$

$$= (gh) \cdot s$$

$$= g \cdot (h \cdot s)$$

$$= g \cdot s$$

$$= t.$$

Thus $ghg^{-1} \in \operatorname{Stab}(t)$ and it follows that

$$\operatorname{Stab}(t) \supset g \operatorname{Stab}(s) g^{-1}.$$

Now apply the same result to t and g^{-1} to get

$$\operatorname{Stab}(g^{-1} \cdot t) \supset g^{-1} \operatorname{Stab}(t)g.$$

Conjugating both sides by g and observing that $s = g^{-1} \cdot t$ gives

$$\operatorname{Stab}(t) \subset g \operatorname{Stab}(s)g^{-1}.$$

In words, the stabiliser of $g \cdot s$ is the conjugate of the stabiliser of s by g.