
22. Group actions

Even though one defines a group abstractly the only sensible way to
think about a group is as a group of symmetries, or what comes to the
same thing, as a group of permutations.

Group actions are to permutations as equivalence relations are to
partitions. Even if we are really only interested in realising a group
as a permutation group, group actions are much easier to manipulate,
even though the data of a group action is the same as the data of a
group homomorphism.

Definition 22.1. Let S be a set and let G be a group.
A group action is a function

G× S −→ S given as (g, s) −→ g · s

that satisfies

(1) For every s ∈ S we have

e · s = s.

(2) For every s ∈ S and g, h ∈ G.

(gh) · s = g · (h · s).

In words, the identity of G acts as the identity on S and to apply gh
is the same as to first apply h and then to apply g.

Definition-Lemma 22.2. Suppose the group G acts on the set S.
Define an equivalence relation ∼ on S by the rule a ∼ b if and only

if there is an element g ∈ G such that g · a = b.

Proof. We have to check that ∼ is reflexive, symmetric and transitive.
If s ∈ S then e · s = s so that s ∼ s and ∼ is reflexive.
If s and t ∈ S and s ∼ t then we may find g ∈ G such that g · s = t.

In this case

g−1 · t = g−1 · (g · s)
= (g−1g) · s
= e · s
= s.

Thus t ∼ s and ∼ is symmetric.
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Now suppose r ∼ s and s ∼ t. Then we may find g and h ∈ G such
that g · r = s and h · s = t. In this case

(gh) · r = g · (h · r)
= g · s
= t.

Thus r ∼ t and ∼ is transitive. �

Note that in the course of the proof we saw that g−1 acts as the
inverse of g.

Definition 22.3. The equivalence classes of the equivalence relation
above are called orbits.

The action is called transitive if there is one orbit.

Proposition 22.4. Let G be a group and let S be a set.
The data of an action of G on S is the same as the data of a rep-

resentation, a group homomorphism

φ : G −→ A(S).

Proof. Suppose we are given an action of G in S. If we fix g then we
get a function

σ : S −→ S given by σ(s) = g · s.

It is easy to see that the inverse of σ is given by the action of g−1. Thus
σ ∈ A(S) is a permutation of S. This gives us a function

φ : G −→ A(S) given by φ(g) = σ.

Suppose that g and h ∈ G and let σ = φ(g), τ = φ(h) and ρ = φ(gh).
We check that

ρ = τσ.

Both sides are permutations of S and so it suffices to show they have
the same effect on an element s ∈ S. We have

ρ(s) = (gh) · s
= g · (h · s)
= g · (σ(s))

= τ(σ(s))

= (τ ◦ σ)(s)

= (τσ)(s).

Thus φ is a group homomorphism and we get a representation.
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Now suppose we are given a representation, a group homomorphism

φ : G −→ A(S).

Define an action

G× S −→ S by the rule g · s = φ(g)(s).

It is straightforward to check that we do get an action and going back-
wards and forwards from action to representation are inverses to each
other. �

Example 22.5. Dn acts on the vertices of a regular n-gon.

The action is the obvious one and the action is transitive. The
corresponding representation is the standard one.

There are two natural ways a group acts on itself.

Example 22.6. Let G be a group.

G acts on the set G by left translation

G×G −→ G given by g · s = gs.

The action is transitive. The corresponding representation is the one
given by Cayley’s theorem.

More generally, let H be a subgroup of G. Then G acts on the left
cosets S of H in G in the obvious way

G× S −→ S given by g · (aH) = (ga)H.

The action is transitive.

Example 22.7. Let G be a group.

G acts on itself by conjugation

G×G −→ G given by g · s = gsg−1.

Note that the orbits are precisely the conjugacy classes of G.
One key property of group actions is that it is easy to count the size

of an orbit:

Definition-Lemma 22.8. Suppose the group G acts on the set S.
Suppose that s ∈ S.

The stabiliser of s, denoted Stab(s), is the subgroup

H = { g ∈ G | g · s = s. }
Let O be the orbit of s. Then

|O| = [G : H].

In words the cardinality of the orbit of s is simply the index of the
stabiliser of s.
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In particular the cardinality of an orbit divides the order of G.

Proof. We first check that H is a subgroup.
H is non-empty as e ∈ H. We check that H is closed under products

and inverses.
Suppose that g and h ∈ H. We have

(gh) · s = g · (h · s)
= g · s
= s.

Thus gh ∈ H and H is closed under products.
Now suppose that g ∈ H. Then g · s = s so that g−1 · s = s. Thus

g−1 ∈ H and H is closed under inverses. Thus H is a subgroup.
Define a function

f : G −→ S by the rule f(g) = g · s.
The image of f is the orbit O of s. Define a relation ∼ on G by the
rule a ∼ b if and only if f(a) = f(b).

Claim 22.9. a ∼ b if and only if a−1b ∈ H.

Proof of (22.9).

a ∼ b if and only if f(a) = f(b)

if and only if a · s = b · s
if and only if a−1 · (b · s) = s

if and only if (a−1b) · s = s

if and only if a−1b ∈ H. �

Note that the relation a ∼ b if and only if a−1b ∈ H is the relation
used to define the left cosets of H in G. It follows that the inverse
image of point of O is simply a left coset, which has cardinality the
order of H. Thus the number of elements of G is precisely

|G| = |O| · |H|.
Dividing by |H| and using Lagrange we get

|O| = [G : H]. �

Example 22.10. Suppose that G = Dn and S is the set of vertices of
a regular n-gon.

Fix a vertex a. No rotation fixes a but there is one flip that fixes a
(it is the flip that either goes through the opposite vertex, if n is even,
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or the opposite edge if n is odd). Thus the stabiliser H of a has two
elements.

The action is transitive and S has n elements. On the other hand
Dn has 2n elements, so that the index of H is also n, as expected.

We will need another easy result about group actions:

Lemma 22.11. Suppose that G acts on the set S.
If g · s = t then

Stab(t) = g Stab(s)g−1.

Proof. We show that the RHS is contained in the LHS. Suppose that
h ∈ Stab(s). We have

(ghg−1) · t = (ghg−1) · (g · s)
= (gh) · ((g−1g) · s)
= (gh) · (e · s)
= (gh) · s
= g · (h · s)
= g · s
= t.

Thus ghg−1 ∈ Stab(t) and it follows that

Stab(t) ⊃ g Stab(s)g−1.

Now apply the same result to t and g−1 to get

Stab(g−1 · t) ⊃ g−1 Stab(t)g.

Conjugating both sides by g and observing that s = g−1 · t gives

Stab(t) ⊂ g Stab(s)g−1. �

In words, the stabiliser of g · s is the conjugate of the stabiliser of s
by g.
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