22. Group Actions

Even though one defines a group abstractly the only sensible way to think about a group is as a group of symmetries, or what comes to the same thing, as a group of permutations.

Group actions are to permutations as equivalence relations are to partitions. Even if we are really only interested in realising a group as a permutation group, group actions are much easier to manipulate, even though the data of a group action is the same as the data of a group homomorphism.

Definition 22.1. Let S be a set and let G be a group.
A group action is a function

$$
G \times S \longrightarrow S \quad \text { given as } \quad(g, s) \longrightarrow g \cdot s
$$

that satisfies
(1) For every $s \in S$ we have

$$
e \cdot s=s
$$

(2) For every $s \in S$ and $g, h \in G$.

$$
(g h) \cdot s=g \cdot(h \cdot s) .
$$

In words, the identity of G acts as the identity on S and to apply $g h$ is the same as to first apply h and then to apply g.

Definition-Lemma 22.2. Suppose the group G acts on the set S.
Define an equivalence relation \sim on S by the rule $a \sim b$ if and only if there is an element $g \in G$ such that $g \cdot a=b$.

Proof. We have to check that \sim is reflexive, symmetric and transitive.
If $s \in S$ then $e \cdot s=s$ so that $s \sim s$ and \sim is reflexive.
If s and $t \in S$ and $s \sim t$ then we may find $g \in G$ such that $g \cdot s=t$. In this case

$$
\begin{aligned}
g^{-1} \cdot t & =g^{-1} \cdot(g \cdot s) \\
& =\left(g^{-1} g\right) \cdot s \\
& =e \cdot s \\
& =s .
\end{aligned}
$$

Thus $t \sim s$ and \sim is symmetric.

Now suppose $r \sim s$ and $s \sim t$. Then we may find g and $h \in G$ such that $g \cdot r=s$ and $h \cdot s=t$. In this case

$$
\begin{aligned}
(g h) \cdot r & =g \cdot(h \cdot r) \\
& =g \cdot s \\
& =t .
\end{aligned}
$$

Thus $r \sim t$ and \sim is transitive.
Note that in the course of the proof we saw that g^{-1} acts as the inverse of g.

Definition 22.3. The equivalence classes of the equivalence relation above are called orbits.

The action is called transitive if there is one orbit.
Proposition 22.4. Let G be a group and let S be a set.
The data of an action of G on S is the same as the data of a representation, a group homomorphism

$$
\phi: G \longrightarrow A(S)
$$

Proof. Suppose we are given an action of G in S. If we fix g then we get a function

$$
\sigma: S \longrightarrow S \quad \text { given by } \quad \sigma(s)=g \cdot s
$$

It is easy to see that the inverse of σ is given by the action of g^{-1}. Thus $\sigma \in A(S)$ is a permutation of S. This gives us a function

$$
\phi: G \longrightarrow A(S) \quad \text { given by } \quad \phi(g)=\sigma .
$$

Suppose that g and $h \in G$ and let $\sigma=\phi(g), \tau=\phi(h)$ and $\rho=\phi(g h)$. We check that

$$
\rho=\tau \sigma
$$

Both sides are permutations of S and so it suffices to show they have the same effect on an element $s \in S$. We have

$$
\begin{aligned}
\rho(s) & =(g h) \cdot s \\
& =g \cdot(h \cdot s) \\
& =g \cdot(\sigma(s)) \\
& =\tau(\sigma(s)) \\
& =(\tau \circ \sigma)(s) \\
& =(\tau \sigma)(s) .
\end{aligned}
$$

Thus ϕ is a group homomorphism and we get a representation.

Now suppose we are given a representation, a group homomorphism

$$
\phi: G \longrightarrow A(S) .
$$

Define an action

$$
G \times S \longrightarrow S \quad \text { by the rule } \quad g \cdot s=\phi(g)(s)
$$

It is straightforward to check that we do get an action and going backwards and forwards from action to representation are inverses to each other.

Example 22.5. D_{n} acts on the vertices of a regular n-gon.
The action is the obvious one and the action is transitive. The corresponding representation is the standard one.

There are two natural ways a group acts on itself.
Example 22.6. Let G be a group.
G acts on the set G by left translation

$$
G \times G \longrightarrow G \quad \text { given by } \quad g \cdot s=g s
$$

The action is transitive. The corresponding representation is the one given by Cayley's theorem.

More generally, let H be a subgroup of G. Then G acts on the left cosets S of H in G in the obvious way

$$
G \times S \longrightarrow S \quad \text { given by } \quad g \cdot(a H)=(g a) H
$$

The action is transitive.
Example 22.7. Let G be a group.
G acts on itself by conjugation

$$
G \times G \longrightarrow G \quad \text { given by } \quad g \cdot s=g s g^{-1} .
$$

Note that the orbits are precisely the conjugacy classes of G.
One key property of group actions is that it is easy to count the size of an orbit:

Definition-Lemma 22.8. Suppose the group G acts on the set S. Suppose that $s \in S$.

The stabiliser of s, denoted $\operatorname{Stab}(s)$, is the subgroup

$$
H=\{g \in G \mid g \cdot s=s .\}
$$

Let O be the orbit of s. Then

$$
|O|=[G: H] .
$$

In words the cardinality of the orbit of s is simply the index of the stabiliser of s.

In particular the cardinality of an orbit divides the order of G.
Proof. We first check that H is a subgroup.
H is non-empty as $e \in H$. We check that H is closed under products and inverses.

Suppose that g and $h \in H$. We have

$$
\begin{aligned}
(g h) \cdot s & =g \cdot(h \cdot s) \\
& =g \cdot s \\
& =s .
\end{aligned}
$$

Thus $g h \in H$ and H is closed under products.
Now suppose that $g \in H$. Then $g \cdot s=s$ so that $g^{-1} \cdot s=s$. Thus $g^{-1} \in H$ and H is closed under inverses. Thus H is a subgroup.

Define a function

$$
f: G \longrightarrow S \quad \text { by the rule } \quad f(g)=g \cdot s
$$

The image of f is the orbit O of s. Define a relation \sim on G by the rule $a \sim b$ if and only if $f(a)=f(b)$.

Claim 22.9. $a \sim b$ if and only if $a^{-1} b \in H$.
Proof of 22.9.

$$
\begin{array}{ll}
a \sim b & \text { if and only if } f(a)=f(b) \\
& \text { if and only if } a \cdot s=b \cdot s \\
& \text { if and only if } a^{-1} \cdot(b \cdot s)=s \\
& \text { if and only if }\left(a^{-1} b\right) \cdot s=s \\
& \text { if and only if } a^{-1} b \in H .
\end{array}
$$

Note that the relation $a \sim b$ if and only if $a^{-1} b \in H$ is the relation used to define the left cosets of H in G. It follows that the inverse image of point of O is simply a left coset, which has cardinality the order of H. Thus the number of elements of G is precisely

$$
|G|=|O| \cdot|H|
$$

Dividing by $|H|$ and using Lagrange we get

$$
|O|=[G: H] .
$$

Example 22.10. Suppose that $G=D_{n}$ and S is the set vertices of a regular n-gon.

Fix a vertex a. No rotation fixes a but there is one flip that fixes a (it is the flip that either goes through the opposite vertex, if n is even,
or the opposite edge if n is odd). Thus the stabiliser H of a has two elements.

The action is transitive and S has n elements. On the other hand D_{n} has $2 n$ elements, so that the index of H is also n, as expected.

We will need another easy result about group actions:
Lemma 22.11. Suppose that G acts on the set S.
If $g \cdot s=t$ then

$$
\operatorname{Stab}(t)=g \operatorname{Stab}(s) g^{-1}
$$

Proof. We show that the RHS is contained in the LHS. Suppose that $h \in \operatorname{Stab}(s)$. We have

$$
\begin{aligned}
\left(g h g^{-1}\right) \cdot t & =\left(g h g^{-1}\right) \cdot(g \cdot s) \\
& =(g h) \cdot\left(\left(g^{-1} g\right) \cdot s\right) \\
& =(g h) \cdot(e \cdot s) \\
& =(g h) \cdot s \\
& =g \cdot(h \cdot s) \\
& =g \cdot s \\
& =t .
\end{aligned}
$$

Thus $g h g^{-1} \in \operatorname{Stab}(t)$ and it follows that

$$
\operatorname{Stab}(t) \supset g \operatorname{Stab}(s) g^{-1}
$$

Now apply the same result to t and g^{-1} to get

$$
\operatorname{Stab}\left(g^{-1} \cdot t\right) \supset g^{-1} \operatorname{Stab}(t) g
$$

Conjugating both sides by g and observing that $s=g^{-1} \cdot t$ gives

$$
\operatorname{Stab}(t) \subset g \operatorname{Stab}(s) g^{-1}
$$

In words, the stabiliser of $g \cdot s$ is the conjugate of the stabiliser of s by g.

