
18. Generators and Relations

Definition-Lemma 18.1. Let A be a set. A word in A is any string of
elements of A and their inverses. We say that the word w′ is obtained
from w by a reduction, if we can get from w to w′ by repeatedly
applying the following rule,

• replace either aa−1 or a−1a by the empty string.

Given any word w, the reduced word w′ associated to w is any
word obtained from w by reduction, such that w′ cannot be reduced any
further.

Given two words w1 and w2 of A, the concatenation of w1 and w2

is the word w = w1w2. The empty word is denoted e.
The set of all reduced words is denoted FA. With product defined

as the reduced concatenation, this set becomes a group, called the free
group with generators A.

It is interesting to look at examples. Suppose that A contains one
element a. Then any element of FA = Fa, is equal to a string w =
aaaa−1a−1aaa etc. Given any such word, we pass to the reduction w′

of w. This means cancelling as much as we can, and replacing strings
of a’s by the corresponding power. Thus

w = aaa−1aaa

= aaaa

= a4 = w′,

where equality means up to reduction. Thus the free group on one
generator is isomorphic to Z.

The free group on two generators is much more complicated and it
is not abelian. A typical reduced word might be

a3b−2a5b13.

Clearly Fa,b has quite a few elements. Free groups have a very useful
universal property.

Lemma 18.2. Let F = FS be a free group with generators S. Let G
be any group. Suppose that we are given a function f : S −→ G.

Then there is a unique homomorphism

φ : F −→ G
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that extends f . In other words, the following diagram commutes

S
f - G

F.
?

∩

φ

-

Proof. Given a reduced word w in F , send this to the element given
by replacing every letter by its image in G. It is easy to see that this
is a homomorphism, as there are no relations between the elements of
F . �

In other words if S = {a, b} and you send a to g and b to h then
you have no choice but to send w = a2b−3a to g2h−3g, whatever that
element is in G.

This gives us a convenient way to present a group G. Pick generators
S of G. Then we get a homomorphism

φ : FS −→ G.

As S generates G, φ is surjective. Let the kernel be H. By the
First Isomorphism Theorem, G is isomorphic to FS/H. To describe
H, we need to write down generators R for H. These generators are
called relations, since they describe relations amongs the generators,
such that if we mod out by these relations, then we get G.

Definition 18.3. A presentation of a group G is a choice of gen-
erators S of G and a description of the relations R amongst these
generators.

It is probably easiest to give some examples.
Let G be a cyclic group of order n. Pick a generator a. Then we get

a homomorphism

φ : Fa −→ G.

The kernel of φ is equal to H, which contains all elements of the form
am, where m is a multiple of n, H = 〈an〉. Thus a presentation for G
is given by the single generator a with the single relation an = e.

Take the group D4, the symmetries of the square. This has two
natural generators g and f , where g is rotation through 2π/4 = π/2
and f is reflection about a diagonal.

Thus we get a map

Fa,b −→ D4

given by sending a to f and b to g. What are the relations, that is,
what is the kernel? Well f 2 = e and g4 = e, so two obvious relations
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are a2 and b4. On the other hand

fgf−1 = g−1 so that aba−1 = b−1.

Using this relation, any word w can be manipulated into the form

aibj,

where i ∈ {0, 1} and j ∈ {0, 1, 2, 3}. Since this gives eight elements
of the quotient and there are eight elements of G, it follows that the
kernel is generated by

a2, b4, aba−1b.

There are many ways to present the symmetric group Sn. One way
is to take the transpositions

τi = (i, i+ 1) where 1 ≤ i ≤ n− 1.

The relations are then

τ 2i = e, (τiτi+1)
3 = e and (τiτj)

2 = e,

where |i− j| > 1.

Definition 18.4. Let S be a set. The free abelian group AS gen-
erated by S is the quotient of FS, the free group generated by S, and
the relations R given by the commutators of the elements of S.

Let S = {a, b}. Then Aa,b is isomorphic to Z× Z. Similarly for any
finite set:

Lemma 18.5. The free abelian group on n generators is isomorphic
to the product of n copies of Z.

Proof. We do the case n = 2. There are two maps fi : {a, b} −→ Z.
The first sends a to 1 and b to 0 and the second sends a to 0 and b to
1. By the universal property of the free group Fa,b there are two group
homomorphisms φi : Fa,b −→ Z.

Since Z is abelian we get two group homomorphism ψi : Aa,b −→ Z,
by the universal property of the commutator subgroup.

Finally by the universal property of the product there is a group
homomorphism ψ : Aa,b −→ Z× Z. We have ψ(a) = (1, 0) and ψ(b) =
(0, 1). The image of ψ is the whole of Z × Z as (1, 0) and (0, 1) are
generators of Z× Z.

The elements of Aa,b are of the form ambn. It is clear that the kernel
is trivial so that ψ is an isomorphism. �

Lemma 18.6. Let S be any set and let G be any abelian group. Given
any map f : S −→ G there is a unique homomorphism

AS −→ G.
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Proof. As FS is a free group, there is a unique homomorphism

φ : FS −→ G.

As G is abelian the kernel of φ contains the commutator subgroup.
But then, as AS is by definition the quotient of FS by the commutator
subgroup, there is a unique map AS −→ G extending f . �

In the proof of (18.5) we could have deduced the existence of the
group homomorphisms ψi directly from fi using the universal property
of Aa,b.

Lemma 18.7. Let G be any finitely generated abelian group.
Then G is a quotient of Z× Z× Z× · · · × Z.

Proof. Pick a finite set of generators S of G. By (18.6) there is a unique
homomorphism

AS −→ G.

As S generates G this map is surjective. On the other hand AS is
isomorphic to a product of copies of Z. �

Theorem 18.8. Let G be a finitely generated abelian group.
Then G is isomorphic to Z × Z × · · · × Z × T , where T may be

presented uniquely as either,

(1) Zq1 × Zq2 × · · · × Zqr , where each qi is a power of a prime, or
(2) Zm1 × Zm2 × · · · × Zmr , where mi|mi+1.

Given this, we can classify all abelian groups of a fixed finite order.
For example, take n = 60 = 22 · 3 · 5. Then we have

Z2 × Z2 × Z3 × Z5 or Z4 × Z3 × Z5,

using the first representation, or

Z2 × Z30 or Z60

using the second representation.
Finally let me mention that in general if one is given generators and

relations, it can be very hard to describe the resulting quotient.

Theorem 18.9. There is no effective algorithm to solve any of the
following problems.

Given relations R, decide if

(1) two words w1 and w2 are equivalent, modulo the relations.
(2) a word w is equivalent, modulo the relations, to the identity.

Succinctly, the method of representing groups by generators and re-
lations is an art not a science.
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