17. The Alternating Groups

Consider the group S_{3}. Then this group contains a normal subgroup, generated by a 3 -cycle.

Now the elements of S_{3} come in three types. The identity, the product of zero transpositions; the transpositions, the product of one transposition, and the three cycles, products of two transpositions. Then the normal subgroup above, consists of all permutations that can be represented as a product of an even number of transpositions.

In general there is no canonical way to represent a permutation as a product of transpositions. But we might hope that the pattern above continues to hold in every permutation group.

Definition 17.1. Let $\sigma \in S_{n}$ be a permutation.
We say that σ is even if it can be represented as a product of an even number of transpositions. We say that σ is odd if it can be represented as a product of an odd number of transpositions.

The following result is much trickier to prove than it looks.
Lemma 17.2. Let $\sigma \in S_{n}$ be a permutation.
Then σ is not both an even and an odd permutation.
There is no entirely satisfactory proof of 17.2 . Here is perhaps the simplest.

Definition 17.3. Let $x_{1}, x_{2}, \ldots, x_{n}$ be indeterminates and set

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i<j}\left(x_{i}-x_{j}\right)
$$

For example, if $n=3$, then

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right) .
$$

Definition 17.4. Given a permutation $\sigma \in S_{n}$, let

$$
g=\sigma^{*}(f)=\prod_{i<j}\left(x_{\sigma(i)}-x_{\sigma(j)}\right) .
$$

Suppose that $\sigma=(1,2) \in S_{3}$. Then

$$
g=\sigma^{*}(f)=\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{1}-x_{3}\right)=-\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)=-f .
$$

The following Lemma is the key part of the proof of 17.2 .
Lemma 17.5. Let σ and τ be two permutations and let $\rho=\sigma \tau$. Then
(1) $\sigma^{*}(f)= \pm f$.
(2) $\rho^{*}(f)=\sigma^{*}\left(\tau^{*}(f)\right)$.
(3) $\sigma^{*}(f)=-f$, whenever σ is a transposition.

Proof. g is clearly a product of terms of the form $x_{i}-x_{j}$ or $x_{j}-x_{i}$. Thus $g= \pm f$. Hence (1).

$$
\begin{aligned}
\sigma^{*}\left(\tau^{*}(f)\right) & =\sigma^{*}\left(\prod_{i<j}\left(x_{\tau(i)}-x_{\tau(j)}\right)\right) \\
& =\prod_{i<j}\left(x_{(\sigma(\tau(i))}-x_{\sigma(\tau(j))}\right) \\
& =\prod_{i<j}\left(x_{\rho(i)}-x_{\rho(j)}\right) \\
& =\rho^{*}(f) .
\end{aligned}
$$

Hence (2).
Suppose that $\sigma=(a, b)$, where $a<b$. Consider the effect of applying σ to $x_{i}-x_{j}$, where $i<j$. Then the only terms of f affected by σ are the ones that involve either x_{a} or x_{b}.

Let

$$
I=\{a, b\} \cap\{i, j\}
$$

If I is empty then $x_{i}-x_{j}$ is unaffected by σ.
Suppose that

$$
I=\{b\} .
$$

We consider the position of i. If $i<a$ then

$$
x_{i}-x_{j}=x_{i}-x_{b} \quad \text { is sent to } \quad x_{i}-x_{a}
$$

and there is no change in sign. If $a<i<b$ then

$$
x_{i}-x_{j}=x_{i}-x_{b} \quad \text { is sent to } \quad x_{i}-x_{a}=-\left(x_{a}-x_{i}\right)
$$

and there is a change in sign.
If $i=b$ then

$$
x_{i}-x_{j}=x_{b}-x_{j} \quad \text { is sent to } \quad x_{a}-x_{j}
$$

and there is no change in sign. The case $i>b$ is not possible. Now suppose that

$$
I=\{a\}
$$

There are again three cases, depending on the position of j. If $j>b$ or $j=a$ there is no change in sign and if $a<j<b$ there is a change in sign. Thus the sign changes when I has one element cancel each other out.

Finally if

$$
I=\{a, b\}
$$

then

$$
x_{i}-x_{j}=x_{a}-x_{b} \quad \text { is sent to } \quad x_{b}-x_{a}=-\left(x_{a}-x_{b}\right)
$$

and there is a change in sign. In total then the sign changes. Hence (3).

Proof. Suppose that σ is a product of an even number of transpositions. Then by (2) and (3) of (17.5), $\sigma^{*}(f)=f$. Similarly if $\sigma^{*}(f)$ is a product of an odd number of transpositions, then $\sigma^{*}(f)=-f$. Thus σ cannot be both even and odd.

Definition-Lemma 17.6. There is a surjective homomorphism

$$
\phi: S_{n} \longrightarrow \mathbb{Z}_{2}
$$

The kernel consists of the even transpositions, and is called the alternating group A_{n}.
Proof. The map sends an even transposition to 0 and an odd transposition to 1. (2) of 17.5 implies that this map is a homomorphism.

Note that half of the elements of S_{n} are even, so that the alternating group A_{n} has order $\frac{n!}{2}$. One of the most important properties of the alternating group is,

Theorem 17.7. Suppose that $n \geq 5$.
The only normal subgroup of S_{n} is A_{n}. Moreover A_{n} is simple, that is, A_{n} has no proper normal subgroups.

Recall that $V=\{e,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$ is a normal subgroup of S_{4}. It is also therefore a normal subgroup of A_{4}.

