
16. Characteristic subgroups and Products

Recall that a subgroup is normal if it is invariant under conjugation.
Now conjugation is just a special case of an automorphism of G.

Definition 16.1. Let G be a group and let H be a subgroup. We say
that H is a characteristic subgroup of G, if for every automorphism
φ of G, φ(H) ⊂ H.

First an easy observation.

Lemma 16.2. Let H be a characteristically normal subgroup of G.

(1) H is normal in G.
(2) If φ is an automorphism of G then φ(H) = H.

Proof. If a ∈ G then let

φ : G −→ G given by g −→ aga−1

Then φ is an automorphism of G and

aHa−1 = φ(H) ⊂ H.

Thus H is normal in G. This is (1).
Let ψ be the inverse of φ. Then ψ is an automorphism of G and so

ψ(H) ⊂ H.

Applying φ it follows that

H = φ(ψ(H))

⊂ φ(H).

This gives (2). �

It turns out that most of the general normal subgroups that we have
defined so far are all in fact characteristic subgroups.

Lemma 16.3. Let G be a group and let Z = Z(G) be the centre.
Then Z is characteristically normal.

Proof. Let φ be an automorphism of G. We have to show φ(Z) ⊂ Z.
Pick z ∈ Z. Then z commutes with every element of G. Pick an
element x of G. As φ is a bijection, x = φ(y), for some y ∈ G.

We have

xφ(z) = φ(y)φ(z)

= φ(yz)

= φ(zy)

= φ(z)φ(y)

= φ(z)x.
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As x is arbitrary, it follows that φ(z) commutes with every element of
G. But then φ(z) ∈ Z. Thus φ(Z) ⊂ Z. �

Definition 16.4. Let G be a group and let x and y be two elements of
G. x−1y−1xy is called the commutator of x and y.

The commutator subgroup of G is the group generated by all of
the commutators.

Lemma 16.5. Let G be a group and let H be the commutator subgroup.
Then H is characteristically normal in G and the quotient group

G/H is abelian. Moreover this quotient is universal amongst all homo-
morphisms to abelian groups in the following sense.

Suppose that φ : G −→ G′ is any homomorphism of groups, where G′

is abelian. Then there is a unique homomorphism G/H −→ G′.

Proof. Suppose that φ is an automorphism of G and let x and y be two
elements of G. Then

φ(x−1y−1xy) = φ(x)−1φ(y)−1φ(x)φ(y).

The last expression is clearly the commutator of φ(x) and φ(y). Thus
φ(H) ⊂ H and so H is characteristically normal in G.

Suppose that aH and bH are two left cosets. Then

(bH)(aH) = baH

= ba(a−1b−1ab)H

= abH

= (aH)(bH).

Thus G/H is abelian. Suppose that φ : G −→ G′ is a homomor-
phism, and that G′ is abelian. By the universal property of a quotient,
it suffices to prove that the kernel of φ must contain H.

Since H is generated by the commutators, it suffices to prove that
any commutator must lie in the kernel of φ. Suppose that x and y are
in G.

Then φ(x)φ(y) = φ(y)φ(x). It follows that

φ(x)−1φ(y)−1φ(x)φ(y) = φ(x−1y−1xy)

is the identity in G′. Thus x−1y−1xy is sent to the identity, that is, the
commutator of x and y lies in the kernel of φ. �

Definition-Lemma 16.6. Let G and H be any two groups.
The product of G and H, denoted G × H, is the group, whose

elements are the ordinary elements of the cartesian product of G and
H as sets, with multiplication defined as

(g1, h1)(g2, h2) = (g1g2, h1h2).
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Proof. We need to check that with this law of multiplication, G × H
becomes a group. This is left as an exercise for the reader. �

Definition 16.7. Let C be a category and let X and Y be two objects of
C. The categorical product of X and Y , denoted X×Y , is an object
together with two morphisms p : X × Y −→ X and q : X × Y −→ Y
that are universal amongst all such morphisms, in the following sense.

Suppose that there are morphisms f : Z −→ X and g : Z −→ Y .
Then there is a unique morphism Z −→ X × Y which makes the fol-
lowing diagram commute,

X

Z -

f
-

X × Y

p

6

Y

q

?
g -

Note that, by the universal property of a categorical product, in
any category, the product is unique, up to unique isomorphism. The
proof proceeds exactly as in the proof of the uniqueness of a categorical
quotient and is left as an exercise for the reader.

Lemma 16.8. The product of groups is a categorical product.
That is, given two groups G and H, the group G × H defined in

(16.6) satisfies the universal property of (16.7).

Proof. First of all note that the two ordinary projection maps p : G×
H −→ G and q : G×H −→ H are both homomorphisms (easy exercise
left for the reader).

Suppose that we are given a group K and two homomorphisms
f : K −→ G and g : K −→ H. We define a map u : K −→ G × H
by sending k to (f(k), g(k)).

It is left as an exercise for the reader to prove that this map is a
homomorphism and that it is the only such map, for which the diagram
commutes. �
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