
15. A little Category Theory

Definition 15.1. A category C consists of two things. The first is
the objects of the category. The second is, given any two objects, X
and Y , we associate a collection of morphisms, denoted Hom(X, Y ).
If the collection of all morphisms from X to Y is a set, we say that
the category is locally small; it is small if in addition the objects
are a set. Given three objects, X, Y and Z and two morphisms f ∈
Hom(X, Y ), g ∈ Hom(Y, Z), there is a rule of composition,

g ◦ f ∈ Hom(X,Z).

A category satisfies the following two axioms.

(1) Composition is associative. That is, given f ∈ Hom(X, Y ),
g ∈ Hom(Y, Z), h ∈ Hom(Z,W ), we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

(2) There is an element IX ∈ Hom(X,X) that acts as an identity,
so that if f ∈ Hom(X, Y ) and g ∈ Hom(Y,X) we have,

f ◦ IX = f,

and

IX ◦ g = g.

Given f ∈ Hom(X, Y ) we say that g ∈ Hom(Y,X) is the inverse
of f if f ◦ g = IY and g ◦ f = IX . In this case we say that f is an
isomorphism and we say that X and Y are isomorphic.

Given most advanced mathematics classes, there is normally a nat-
urally associated category.

For us, the most natural category is the category of groups. The
objects are the collection of all groups and the morphisms are homo-
morphisms. Composition of morphisms is composition of functions. It
is not hard to see that all the axioms are satisfied. In fact the only
thing we have not checked is that composition of homomorphisms is a
homomorphism, which is an exercise for the reader.

Two groups are isomorphic if and only if they are isomorphic as
objects of the category.

Another very natural category is the category of sets. Here a mor-
phism is any function. Two sets are isomorphic if and only if they have
the same cardinality.

Yet another category is the category of topological spaces. The ob-
jects are topological spaces and the morphisms are continuous maps.
Two topological spaces are then homeomorphic if and only if they are
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isomorphic as objects of this category. The category of metric spaces
is a subcategory of the category of topological spaces.

The category of vector spaces, is the category whose objects are
vector spaces and whose morphisms are linear maps.

Definition 15.2. Let

A
a- B

C

b

?

d
- D

c

?

be a collection of objects and morphisms belonging to a category.
We say that the diagram commutes if the two morphisms from A

to D are the same, that is

c ◦ a = d ◦ b.

In a category, the focus of interest is not the objects, but the mor-
phisms between the objects. In this sense, we would like to characterise
the notion of the quotient group in a way that does not make explicit
reference to the elements of G/H, but rather define everything in terms
of homomorphisms between groups. Even though this is somewhat ab-
stract, there is an obvious advantage to this approach; as a set G/H is
rather complicated, its elements are left cosets, which are themselves
sets. But really we only need to know what G/H is up to isomorphism.

Definition 15.3. Let G be a group and let H be a normal subgroup.
The categorical quotient of G by H is a group Q together with a

homomorphism u : G −→ Q, such that kernel of u contains H, which
is universal amongst all such homomorphisms in the following sense:

Suppose that φ : G −→ G′ is any homomorphism such that the kernel
of φ contains H. Then there is a unique induced homomorphism

G
φ- G′

Q

u

?

f
-

which makes the diagram commute.

Note that in the definition of the categorical quotient, the most im-
portant part of the definition refers to the homomorphism u, and the
universal property that it satisfies.

Theorem 15.4. The category of groups admits categorical quotients.
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That is to say, given a group G and a normal subgroup H, there is a
categorical quotient group Q. Furthermore, Q is unique, up to a unique
isomorphism.

Proof. We first prove existence. Let G/H be the quotient group and let
u : G −→ G/H be the natural homomorphism. I claim that this pair
forms a categorical quotient. Thus we have to prove that u is universal.

To this end, suppose that we are given a homomorphism φ : G −→
G′. Define a map

f : G/H −→ G′

by sending gH to φ(g). It is clear that the condition that the diagram
commutes, forces this definition of f . We have to check that f is well-
defined.

Suppose that g1H = g2H. We need to check that φ(g1) = φ(g2). As
g1H = g2H, it follows that g2 = g1h, for some h ∈ H. In this case

φ(g2) = φ(g1h)

= φ(g1)φ(h)

= φ(g1),

where we use the fact that h is in the kernel of φ. Thus the map f is
well-defined and f is unique.

Now we check that f is a homomorphism. Suppose that x and y are
in G/H. Then x = g1H and y = g2H, for some g1 and g2 in G. In this
case

f(xy) = f(g1g2H)

= φ(g1g2)

= φ(g1)φ(g2)

= f(g1H)f(g2H)

= f(x)f(y).

Thus f is a homomorphism. Finally we check that the diagram
above commutes. Suppose that g ∈ G. Going along the top we get
φ(g). Going down first, we get gH and then going diagonally we get
f(gH) = φ(g), by definition of f .

Thus G/H is a categorical quotient. In particular categorical quo-
tients exist.

Now we prove that categorical quotients are unique, up to unique
isomorphism. Suppose that Q1 and Q2 are two such categorical quo-
tients. As Q1 is a categorical quotient and there is a homomorphism
u2 : G −→ Q2 whose kernel contains H, it follows that there is an
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induced homomorphism f : Q1 −→ Q2, which makes the following dia-
gram commute

G
u2- Q2

Q1,

u1

?
f

-

By symmetry there is a homomorphism g : Q2 −→ Q1, which makes
the same diagram commute, with 1 and 2 switched. Consider the
composition f ◦ g : Q2 −→ Q2. This is a homomorphism which make
the following diagram commute

G
u2- Q2

Q2.

u2

?

-

However there is one homomorphism that makes the diagram com-
mute, namely the identity. By uniqueness, f ◦ g must be the identity.
Similarly g ◦ f must be the identity. So f and g are inverses of each
other, and hence isomorphisms. Note that f itself is unique, since its
existence was given to us by the universal property of u1.

Thus the quotient is unique, up to a unique isomorphism. �

Now it is easy to us this to deduce the isomorphism Theorems.
We have already seen that given any group G and a normal subgroup

H, there is a natural homomorphism φ : G −→ G/H, whose kernel is
H. In fact we will see that this map is not only natural, it is in some
sense the only such map.

Theorem 15.5 (First Isomorphism Theorem). Let φ : G −→ G′ be
a homomorphism of groups. Suppose that φ is onto and let H be the
kernel of φ.

Then G′ is isomorphic to G/H.

Proof. By the universal property of a quotient, there is a natural ho-
morphism

f : G/H −→ G′.

As f makes the following diagram commute,

G
φ- G′

G/K,

u

?

f
-

w
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it follows that f is surjective. It remains to prove that f is injective.
Suppose that x is in the kernel of f . Then x has the form gH and by
definition of f , f(x) = φ(g). Thus g is in the kernel of φ and so g ∈ H.
In this case x = H, the identity of G/H. So the kernel of f is trivial
and f is injective. Hence f is an isomorphism. �

Definition 15.6. Let G be a group and let H and K be two subgroups
of G.
H ∨K denotes the subgroup generated by the union of H and K.

In general, it is hard to identify H ∨K as a set. However,

Theorem 15.7 (Second Isomorphism Theorem). Let G be a group, let
H be a subgroup and let N be a normal subgroup. Then

H ∨N = HN = {hn |h ∈ H,n ∈ N }.
Furthermore H ∩ N is a normal subgroup of H and the two groups

H/H ∩N and HN/N are isomorphic.

Proof. The pairwise products of the elements of H and N are certainly
elements of H ∨N . Thus the RHS of the equality above is a subset of
the LHS. The RHS is clearly non-empty, it contains H and N and so
it suffices to prove that the RHS is closed under products and inverses.

Suppose that x and y are elements of the RHS. Then x = h1n1 and
y = h2n2, where hi ∈ H and ni ∈ N . Now h−12 n1h2 = n3 ∈ N , as N is
normal in G. So n1h2 = h2n3. In this case

xy = (h1n1)(h2n2)

= h1(n1h2)n2

= h1(h2n3)n2

= (h1h2)(n3n2),

which shows that xy has the correct form. On the other hand, suppose
x = hn. Then hnh−1 = m ∈ N as N is normal and so hn−1h−1 = m−1.
In this case

x−1 = n−1h−1

= hm−1,

so that x−1 is of the correct form.
Hence the first statement. Let H −→ HN be the natural inclu-

sion. As N is normal in G, it is certainly normal in HN , so that we
may compose the inclusion with the natural projection map to get a
homomorphism

H −→ HN/N.
5



This map sends h to hN .
Suppose that x ∈ HN/N . Then x = hnN = hN , where h ∈ H.

Thus the homorphism above is clearly surjective. Suppose that h ∈ H
belongs to the kernel. Then hN = N , the identity coset, so that h ∈ N .
Thus h ∈ H ∩ N . The result then follows by the First Isomorphism
Theorem applied to the map above. �

It is easy to prove the Third isomorphism Theorem from the First.

Theorem 15.8 (Third Isomorphism Theorem). Let K ⊂ H be two
normal subgroups of a group G.

Then
G/H ' (G/K)/(H/K).

Proof. Consider the natural map G −→ G/H. The kernel, H, contains
K. Thus, by the universal property of G/K, it follows that there is a
homomorphism G/K −→ G/H.

This map is clearly surjective. In fact, it sends the left coset gK to
the left coset gH. Now suppose that gK is in the kernel. Then the left
coset gH is the identity coset, that is gH = H, so that g ∈ H. Thus
the kernel consists of those left cosets of the form gK, for g ∈ H, that
is H/K. The result now follows by the first Isomorphism Theorem. �
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