
14. Quotient Groups

Given a group G and a subgroup H, under what circumstances can
we find a homomorphism φ : G −→ G′, such that H is the kernel of φ?

Clearly a necessary condition is that H is normal in G. Somewhat
surprisingly this trivially necessary condition is also in fact sufficient.

The idea is as follows. Given G and H there is an obvious map of
sets. We just put X to be the collection of left cosets of H in G. Then
there is an obvious function

φ : G −→ X.

The map φ just does the obvious thing, it sends g to φ(g) = [g] = gH,
the left coset corresponding to g. Then the subset H is sent to the
single left coset H = [e].

The real question is, can we make X into a group?
Suppose that we are given two left cosets [a] = aH and [b] = bH.

The obvious way to try to define a multiplication in X is to set

(aH)(bH) = [a][b] = [ab] = (ab)H.

In fact if φ is going to be a group homomorphism then this rule is
forced on us.

Unfortunately there is a problem with this attempt to define a multi-
plication. The problem is that the multiplication map is not necessarily
well-defined.

To give an illustrative example of the problems that arise defining
maps on equivalences classes by choosing representatives, consider the
following example. Let Y be the set of all objects in the room you
are currently occupying and let ∼ be the equivalence relation such
that x ∼ y if and only if x and y have the same colour. Then the
equivalence classes are simply the colours of every object in the room.
Consider trying to define a function,

f : Y/ ∼−→ R,

on the equivalences classes to the real numbers. Given a colour, pick
an object with that and colour send that colour to the weight of that
object.

This is clearly absurd. Given any colour, there are lots of objects
with that colour and presumably all weights will be different, so we
don’t get a well-defined function this way.

In fact the problem is that we might represent a left-coset in a com-
pletely different way. Suppose that a′H = aH and b′H = bH, so that
[a′] = [a] and [b′] = [b]. Then we would also have another way to define
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the multiplication, that is

(a′H)(b′H) = [a′][b′] = [a′b′] = (a′b′)H.

For the multiplication to be well-defined, we need

[a′b′] = [ab].

In other words we need that a′b′ ∈ abH. Now we do know that a′ = ah
and b′ = bk for h and k ∈ H. It follows then that

a′b′ = (ah)(bk).

We want to manipulate the right hand side, until it is of the form
abh′ where h′ ∈ H. Now in general it is absolutely guaranteed that
this is going to fail. The point is, if this method did work, then there
would be a homomorphism whose kernel is equal to H. So, at the very
least, we had better assume that H is normal in G.

Now we would like to move the b through the h. As H is normal in
G, we have

bH = Hb.

In particular

hb ∈ Hb = bH,

so that we may find l ∈ H such that hb = bl. It follows that

a′b′ = (ah)(bk)

= a(hb)k

= a(bl)k

= (ab)(lk)

= (ab)h′,

where h′ = lk ∈ H.
Thus, almost by a miracle, if H is normal in G, then the set of left

cosets of H in G becomes a group.

Theorem 14.1. Let G be a group and let H be a normal subgroup.
Then the left cosets of H in G form a group, denoted G/H. G/H

is called the quotient of G modulo H. The rule of multiplication in
G/H is defined as

(aH)(bH) = abH.

Furthermore there is a natural surjective homomorphism

φ : G −→ G/H,

defined as φ(g) = gH. Moreover the kernel of φ is H.
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Proof. We have already checked that this rule of multiplication is well-
defined.

We check the three axioms for a group. We first check associativity.
Suppose that a, b and c are in G. Then

(aH)(bHcH) = (aH)(bcH)

= (a(bc))H

= ((ab)c)H

= (aHbH)cH.

Thus this rule of multiplication is associative.
It is easy to see that eH = H plays the role of the identity. Indeed

aHeH = aeH = aH = eHaH.
Finally given a left coset aH, a−1H is easily seen to be the inverse

of aH.
Thus G/H certainly does form a group.
It is easy to see that φ is a surjective homomorphism. Finally the

inverse image of the identity is equal to all those elements g of G such
that gH = H. Almost by definition of an equivalence relation, it follows
that g ∈ H, so that Kerφ = H. �
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