13. HOMOMORPHISMS AND KERNELS

It is somewhat suprising that one can relax the condition that ¢ is a
bijection in the definition of an isomorphism and come up with a very
interesting property:

Definition 13.1. A map ¢: G — H between two groups is a ho-
morphism if for every g and h in G,

P(gh) = ¢(g)d(h).

Here is an interesting example of a homomorphism. Define a map
¢o:G— H
where G = Z and H is a subgroup of order two, say Z/27Z, by the rule

¢(x) =

0 if z is even
1 if z is odd.

We check that ¢ is a homomorphism. Suppose that x and y are two
integers. There are four cases. x and y are even, x is even, y is odd, x
is odd, y is even, and x and y are both odd.

Now if x and y are both even or both odd, then = + y is even. In
this case ¢(z +y) = 0. In the first case ¢(z) + ¢(y) =0+ 0 =0 and in
the second case ¢(x) + ¢(y) =1+ 1=0.

Otherwise one is even and the other is odd and z + y is odd. In
this case ¢(x +y) = 1 and ¢(x) + ¢(y) = 14+ 0 = 1. Thus we get a
homomorphism.

Here are some elementary properties of homomorphisms.

Lemma 13.2. Let ¢: G — H be a homomorphism.

(1) ¢(e) = f, that is, ¢ maps the identity in G to the identity in
H.

(2) p(a™t) = ¢(a)™', that is, ¢ maps inverses to inverses.

(8) If K is subgroup of G then ¢(K) is a subgroup of H.

Proof. Let a = ¢(e), where e is the identity in G. Then
a = ¢(e)
= ¢(ee)
= ¢(e)d(e)
= aa.

Thus a? = a. Cancelling we get a = f, the identity in H. Hence (1).
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Let b=a""'.

¢(e) = ¢(ab)
= ¢(a)p(b).

But then ¢(b) is the inverse of ¢(a), so that ¢(a™!) = ¢(a)~'. Hence
(2).

Let X = ¢(K). It suffices to check that X is non-empty and closed
under products and inverses. X contains f the identity of H, by (1).
X is closed under inverses by (2) and closed under products, almost by
definition. Thus X is a subgroup. O

Instead of looking at the image, it turns out to be much more inter-
esting to look at the inverse image of the identity.

Definition-Lemma 13.3. Let ¢: G — H be a group homomorphism.
The kernel of ¢, denoted Ker ¢, is the inverse image of the identity.
Then Ker ¢ s a subgroup of G.

Proof. We have to show that the kernel is non-empty and closed under
products and inverses.

Note that ¢(e) = f by (13.2). Thus Ker ¢ is certainly non-empty.
Now suppose that a and b are in the kernel, so that ¢(a) = ¢(b) = f.

¢(ab) = ¢(a)¢(b)
=fr=1r
So the kernel is closed under products.
Finally suppose that ¢(a) = f. Then ¢(a™') = ¢(a)™! = f, where
we used ([13.2)). Thus the kernel is closed under inverses, and so the
kernel is a subgroup. 0

Here are some basic results about the kernel.

Lemma 13.4. Let ¢: G — H be a homomrphism.
Then f is injective if and only if Ker ¢ = {e}.

Proof. If f is injective, then at most one element can be sent to the
identity f € H. Since ¢(e) = f, it follows that Ker ¢ = {e}.

Now suppose that Ker ¢ = {e} and suppose that ¢(z) = ¢(y). Let
g = 27 'y. Then ¢(g) = ¢(x7'y) = ¢(x)"'p(y) = f. Thus g is in the
kernel of ¢ and so ¢ = e. But then 7'y = e and so = = v. U

It turns out that the kernel of a homomorphism enjoys a much more

important property than just being a subgroup.
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Definition 13.5. Let G be a group and let H be a subgroup of G.
We say that H is normal in G and write H <G, if for every g € G,
gHg™' C H.

In other words H is normal in G if and only if it is a union of
conjugacy classes.

Lemma 13.6. Let ¢: G — H be a homomorphism.
Then the kernel of ¢ is a normal subgroup of G.

Proof. We have already seen that the kernel is a subgroup. Suppose
that g € G. We want to prove that

g(Ker ¢)g~* C Ker ¢.

Suppose that h € Ker ¢. We need to prove that ghg~! € Ker ¢.
Now

¢(ghg™") = d(g)p(h)¢(g) ™"
= o(g9)folg)™"
= p(g)olg) " = f
Thus ghg~! € Ker ¢. O

It is interesting to look at some examples of subgroups, to see which
are normal and which are not.

Lemma 13.7. Let G be an abelian group and let H be any subgroup.
Then H is normal in G.

Proof. Clear, as for every h € H and g € G,
ghg ' =99 'h=he H. O

So let us look at the first interesting example of a group which is not
abelian.

Take G = Dj3. Let us first look at H = {I, R, R?}. Then H is normal
in G. In fact, pick g € D3. If g belongs to H, there is nothing to prove.
Otherwise g is a flip. Let us suppose that it is F;. Now pick h € H
and consider ghg™'. If h = I then it is clear that ghg ' =1 € H.

So suppose that h = R. Then

ghg™! = F{RE,
=R*c€ H.
Similarly, if h = R?, then ghg™! = R € H.

Thus H is normal in G.
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Now suppose that H = {I, F1}. Take h = F} and g = R. Then

ghg™' = RF\R?
= FQ.
So ghg™t # H.
In fact, all of this is much easier to see with S3. In the first case
we are looking at H = {e, (1,2,3),(1,3,2)}. In this case H is in fact
a union of conjugacy classes. (Recall that the conjugacy classes of S,

are entirely determined by the cycle type). So H is obviously normal.
Now take H = {e,(1,2)}, and let g = (2,3). Then

gHg ™" ={geg™",9(1,2)g7"}
= {6, (1a 3>}

Thus H is not normal in this case.

Lemma 13.8. Let H be a subgroup of a group G.
TFAE
(1) H is normal in G.
(2) For every g € G, gHg™' = H.
(8) Ha = aH, for every a € G.
(4) The set of left cosets is equal to the set of right cosets.
(5) H is a union of conjugacy classes.

Proof. Suppose that (1) holds. Suppose that g € G. Then

gHg™ ' C H.
Now replace g with k, then
kHE™' Cc H,
for all k € G. Now take k = g~1. Then
g 'HgC H,
so that
HcCgHg™".

But then (2) holds.
If (2) holds, then (3) holds, simply by multiplying the equality

aHa™ ' = H,

on the right by a.
If (3) holds, then (4) certainly holds.
Suppose that (4) holds. Let g € G. Then g € gH and g € Hg. If

the set of left cosets is equal to the set of right cosets, then this means
4



gH = Hg. Now take this equality and multiply it on the right by ¢~
Then certainly gHg™' C H, so that H is normal in G. Hence (1).
Thus (1), (2), (3) and (4) are all equivalent.
Suppose that (5) holds. Then H = UA;, where A; are conjugacy
classes. Then

gHg ™' = JgAig™
— UAZ'
— .

Thus H is normal.

Finally suppose that (2) holds. Suppose that a € H and that A is
the conjugacy class to which a belongs. Pick b € A. Then there is an
element g € G such that gag~' =b. Thenbec gHg' = H. So A C H.
But then H is a union of conjugacy classes. O

Given this, we can give one more interesting example of a normal
subgroup.

Let G = S;. Then let H = {e,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}.
We have already seen that H is a subgroup of G. On the other hand,
H is a union of conjugacy classes. Indeed the three non-trivial elements
of H represent the only permutations with cycle type (2,2). Thus H
is normal in G.
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