
13. Homomorphisms and kernels

It is somewhat suprising that one can relax the condition that φ is a
bijection in the definition of an isomorphism and come up with a very
interesting property:

Definition 13.1. A map φ : G −→ H between two groups is a ho-
morphism if for every g and h in G,

φ(gh) = φ(g)φ(h).

Here is an interesting example of a homomorphism. Define a map

φ : G −→ H

where G = Z and H is a subgroup of order two, say Z/2Z, by the rule

φ(x) =

{
0 if x is even

1 if x is odd.

We check that φ is a homomorphism. Suppose that x and y are two
integers. There are four cases. x and y are even, x is even, y is odd, x
is odd, y is even, and x and y are both odd.

Now if x and y are both even or both odd, then x + y is even. In
this case φ(x+ y) = 0. In the first case φ(x) + φ(y) = 0 + 0 = 0 and in
the second case φ(x) + φ(y) = 1 + 1 = 0.

Otherwise one is even and the other is odd and x + y is odd. In
this case φ(x + y) = 1 and φ(x) + φ(y) = 1 + 0 = 1. Thus we get a
homomorphism.

Here are some elementary properties of homomorphisms.

Lemma 13.2. Let φ : G −→ H be a homomorphism.

(1) φ(e) = f , that is, φ maps the identity in G to the identity in
H.

(2) φ(a−1) = φ(a)−1, that is, φ maps inverses to inverses.
(3) If K is subgroup of G then φ(K) is a subgroup of H.

Proof. Let a = φ(e), where e is the identity in G. Then

a = φ(e)

= φ(ee)

= φ(e)φ(e)

= aa.

Thus a2 = a. Cancelling we get a = f , the identity in H. Hence (1).
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Let b = a−1.

φ(e) = φ(ab)

= φ(a)φ(b).

But then φ(b) is the inverse of φ(a), so that φ(a−1) = φ(a)−1. Hence
(2).

Let X = φ(K). It suffices to check that X is non-empty and closed
under products and inverses. X contains f the identity of H, by (1).
X is closed under inverses by (2) and closed under products, almost by
definition. Thus X is a subgroup. �

Instead of looking at the image, it turns out to be much more inter-
esting to look at the inverse image of the identity.

Definition-Lemma 13.3. Let φ : G −→ H be a group homomorphism.
The kernel of φ, denoted Kerφ, is the inverse image of the identity.

Then Kerφ is a subgroup of G.

Proof. We have to show that the kernel is non-empty and closed under
products and inverses.

Note that φ(e) = f by (13.2). Thus Kerφ is certainly non-empty.
Now suppose that a and b are in the kernel, so that φ(a) = φ(b) = f .

φ(ab) = φ(a)φ(b)

= ff = f.

So the kernel is closed under products.
Finally suppose that φ(a) = f . Then φ(a−1) = φ(a)−1 = f , where

we used (13.2). Thus the kernel is closed under inverses, and so the
kernel is a subgroup. �

Here are some basic results about the kernel.

Lemma 13.4. Let φ : G −→ H be a homomrphism.
Then f is injective if and only if Kerφ = {e}.

Proof. If f is injective, then at most one element can be sent to the
identity f ∈ H. Since φ(e) = f , it follows that Kerφ = {e}.

Now suppose that Kerφ = {e} and suppose that φ(x) = φ(y). Let
g = x−1y. Then φ(g) = φ(x−1y) = φ(x)−1φ(y) = f . Thus g is in the
kernel of φ and so g = e. But then x−1y = e and so x = y. �

It turns out that the kernel of a homomorphism enjoys a much more
important property than just being a subgroup.
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Definition 13.5. Let G be a group and let H be a subgroup of G.
We say that H is normal in G and write H�G, if for every g ∈ G,

gHg−1 ⊂ H.

In other words H is normal in G if and only if it is a union of
conjugacy classes.

Lemma 13.6. Let φ : G −→ H be a homomorphism.
Then the kernel of φ is a normal subgroup of G.

Proof. We have already seen that the kernel is a subgroup. Suppose
that g ∈ G. We want to prove that

g(Kerφ)g−1 ⊂ Kerφ.

Suppose that h ∈ Kerφ. We need to prove that ghg−1 ∈ Kerφ.
Now

φ(ghg−1) = φ(g)φ(h)φ(g)−1

= φ(g)fφ(g)−1

= φ(g)φ(g)−1 = f.

Thus ghg−1 ∈ Kerφ. �

It is interesting to look at some examples of subgroups, to see which
are normal and which are not.

Lemma 13.7. Let G be an abelian group and let H be any subgroup.
Then H is normal in G.

Proof. Clear, as for every h ∈ H and g ∈ G,

ghg−1 = gg−1h = h ∈ H. �

So let us look at the first interesting example of a group which is not
abelian.

Take G = D3. Let us first look at H = {I, R,R2}. Then H is normal
in G. In fact, pick g ∈ D3. If g belongs to H, there is nothing to prove.
Otherwise g is a flip. Let us suppose that it is F1. Now pick h ∈ H
and consider ghg−1. If h = I then it is clear that ghg−1 = I ∈ H.

So suppose that h = R. Then

ghg−1 = F1RF1

= R2 ∈ H.

Similarly, if h = R2, then ghg−1 = R ∈ H.
Thus H is normal in G.

3



Now suppose that H = {I, F1}. Take h = F1 and g = R. Then

ghg−1 = RF1R
2

= F2.

So ghg−1 6= H.
In fact, all of this is much easier to see with S3. In the first case

we are looking at H = {e, (1, 2, 3), (1, 3, 2)}. In this case H is in fact
a union of conjugacy classes. (Recall that the conjugacy classes of Sn

are entirely determined by the cycle type). So H is obviously normal.
Now take H = {e, (1, 2)}, and let g = (2, 3). Then

gHg−1 = {geg−1, g(1, 2)g−1}
= {e, (1, 3)}.

Thus H is not normal in this case.

Lemma 13.8. Let H be a subgroup of a group G.
TFAE

(1) H is normal in G.
(2) For every g ∈ G, gHg−1 = H.
(3) Ha = aH, for every a ∈ G.
(4) The set of left cosets is equal to the set of right cosets.
(5) H is a union of conjugacy classes.

Proof. Suppose that (1) holds. Suppose that g ∈ G. Then

gHg−1 ⊂ H.

Now replace g with k, then

kHk−1 ⊂ H,

for all k ∈ G. Now take k = g−1. Then

g−1Hg ⊂ H,

so that

H ⊂ gHg−1.

But then (2) holds.
If (2) holds, then (3) holds, simply by multiplying the equality

aHa−1 = H,

on the right by a.
If (3) holds, then (4) certainly holds.
Suppose that (4) holds. Let g ∈ G. Then g ∈ gH and g ∈ Hg. If

the set of left cosets is equal to the set of right cosets, then this means
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gH = Hg. Now take this equality and multiply it on the right by g−1.
Then certainly gHg−1 ⊂ H, so that H is normal in G. Hence (1).

Thus (1), (2), (3) and (4) are all equivalent.
Suppose that (5) holds. Then H = ∪Ai, where Ai are conjugacy

classes. Then

gHg−1 =
⋃

gAig
−1

=
⋃

Ai

= H.

Thus H is normal.
Finally suppose that (2) holds. Suppose that a ∈ H and that A is

the conjugacy class to which a belongs. Pick b ∈ A. Then there is an
element g ∈ G such that gag−1 = b. Then b ∈ gHg−1 = H. So A ⊂ H.
But then H is a union of conjugacy classes. �

Given this, we can give one more interesting example of a normal
subgroup.

Let G = S4. Then let H = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.
We have already seen that H is a subgroup of G. On the other hand,
H is a union of conjugacy classes. Indeed the three non-trivial elements
of H represent the only permutations with cycle type (2, 2). Thus H
is normal in G.
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