
12. Isomorphisms

Look at the groups D3 and S3. They are clearly the same group.
Given a symmetry of a triangle, the natural thing to do is to look at
the corresponding permutation of its vertices. On the other hand, it
is not hard to show that every permutation in S3 can be realised as a
symmetry of the triangle.

It is very useful to have a more formal definition of what it means
for two groups to be the same.

Definition 12.1. Let G and H be two groups. We say that G and H
are isomorphic if there is a bijective map φ : G −→ H, which respects
the group structure. That is to say, for every g and h in G,

φ(gh) = φ(g)φ(h).

The map φ is called an isomorphism.

In words, you can first multiply in G and take the image in H, or
you can take the images in H first and multiply there, and you will get
the same answer either way.

With this definition of isomorphic, it is straightforward to check that
D3 and S3 are isomorphic groups.

Lemma 12.2. Let G and H be two cyclic groups of the same order.
Then G and H are isomorphic.

Proof. Let a be a generator of G and let b be a generator of H. Define
a map

φ : G −→ H

as follows. Suppose that g ∈ G. Then g = ai for some i, and we send
g to g′ = bi.

We first have to check that this map is well-defined. If G is infinite,
then so is H and every element of G may be uniquely represented in
the form ai. Thus the map is automatically well-defined in this case.
Now suppose that G has order k, and suppose that g = aj. Then we
are trying to send g to both bi and bj. We have to check that bi = bj.

As ai = aj, ai−j = e and k must divide i− j. In this case bi−j = e as
the order of H is equal to k. But then bi = bj. Thus φ is well-defined.
The map

H −→ G

defined by sending bi to ai is clearly the inverse of φ. Thus φ is a
bijection.

Now suppose that g = ai and h = aj. Then gh = ai+j and the image
of this element would be bi+j.
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On the other hand, the image of ai is bi and the image of aj is bj and
the product of the images is bibj = bi+j. �

Here is a far more non-trivial example.

Lemma 12.3. The group of real numbers under addition and positive
real numbers under multiplication are isomorphic.

Proof. Let G be the group of real numbers under addition and let H
be the group of real numbers under multiplication. Define a map

φ : G −→ H

by the rule φ(x) = ex. This map is a bijection, by the well-known
results of calculus. We want to check that it is a group isomorphism.
Suppose that x and y ∈ G. Then multiplying in G, we get x + y.
Applying φ we get ex+y.

On the other hand, applying φ directly we get ex and ey. Multiplying
together we get exey = ex+y. �

Definition 12.4. Let G be a group. An isomorphism of G with itself
is called an automorphism.

Definition-Lemma 12.5. Let G be a group and let a ∈ G be an
element of G. Define a map

φ : G −→ G

by the rule

φ(x) = axa−1.

Then φ is an automorphism of G.

Proof. We first check that φ is a bijection.
Define a map

ψ : G −→ G

by the rule

ψ(x) = a−1xa.

Then

ψ(φ(x)) = ψ(axa−1)

= a−1(axa−1)a

= (a−1a)x(a−1a)

= x.

Thus the composition of φ and ψ is the identity. Similarly the compo-
sition of ψ and φ is the identity. In particular φ is a bijection.
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Now we check that φ is an isomorphism.

φ(x)φ(y) = (axa−1)(aya−1)

= a(xy)a−1

= φ(xy).

Thus φ is an isomorphism. �

There is a particularly simple and easy to understand example of
these types of automorphisms. Let us go back to the case of D3.
Choosing a labelling of the vertices is somewhat arbitrary. A differ-
ent choice of labelling, corresponds to a permutation of the numbers 1,
2 and 3. These will induce an automorphism of S3, which is given by
conjugation by the given permutation.

Theorem 12.6 (Cayley’s Theorem). Let G be a group.
Then G is isomorphic to a subgroup of a permutation group. If more-

over G is finite, then so is the permutation group, so that every finite
group is a subgroup of Sn, for some n.

Proof. Let H = A(G), the permutations of the set G. Define a map

φ : G −→ H

by the following rule. Given a ∈ G, send it to the permutation σ =
φ(a),

σ : G −→ G,

defined as follows

σ(a) = ag.

Note that σ is indeed a permutation, that is, σ is a bijection. In fact
the inverse of σ is the map that sends g to a−1g.

I claim that φ is an isomorphism onto its image. We first check that
φ is injective. Suppose that a and b are two elements of G. Let σ and
τ be the two corresponding elements of A(G). If σ = τ , then σ and τ
must have the same effect on elements of G. Look at their effect on e,
the identity,

a = ae = σ(e) = τ(e) = be = b.

Thus φ(a) = φ(b) implies a = b and φ is injective. Thus φ is cer-
tainly a bijection onto its image. Now we check that φ(ab) = φ(a)φ(b).
Suppose that σ = φ(a) and τ = φ(b) and ρ = φ(ab). We want to check
that ρ = στ . This is an equation that involves permutations, so it is
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enough to check that both sides have the same effect on elements of G.
Let g ∈ G. Then

σ(τ(g)) = σ(bg)

= a(b(g))

= (ab)g

= ρ(g).

Thus φ is an isomorphism onto its image. �

In practice Cayley’s Theorem is not in itself very useful. For example,
if G = D3 then G is isomorphic to S3. But if we were to apply the
machinery behind Cayley’s Theorem, we would exhibit G as a subgroup
of S6, a group of order 6! = 720.

However the idea of trying to put a group inside a permutation group
turns out to be extremely powerful. Consider the example of trying to
construct a group G of order 4. We have already shown that there are
at most two groups of order four, up to isomorphism. One is cyclic of
order 4. The multiplication table of the other, if it is indeed a group,
is determined as

∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

In fact the only thing left to show is that the multiplication is asso-
ciative.

The idea is to find a subgroup H of Sn, whose multiplication table
is precisely the one given. The clue to finding H is given by Cayley’s
Theorem. For a start Cayley’s Theorem shows that we should take
n = 4.

Now the four permutations of G determined by the multiplication
table are(

e a b c
e a b c

) (
e a b c
a e c b

) (
e a b c
b c e a

) (
e a b c
c b a e

)
.

Replacing letters by numbers, in the obvious way, we get(
1 2 3 4
1 2 3 4

) (
1 2 3 4
2 1 4 3

) (
1 2 3 4
3 4 1 2

) (
1 2 3 4
4 3 2 1

)
.

This reduces to

H = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.
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Now it is easy to see that this subset is in fact a subgroup. In fact
the square of any element is the identity and the product of any two
elements is the third. Thus H is a subgroup of S4. Now H is a group
of order 4, which is not cyclic.

Thus there are at least two groups of order 4, up to isomorphism.
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