## 10. Permutation groups

Definition 10.1. Let $S$ be a set. A permutation of $S$ is simply a bijection $f: S \longrightarrow S$.

Lemma 10.2. Let $S$ be a set.
(1) Let $f$ and $g$ be two permutations of $S$. Then the composition of $f$ and $g$ is a permutation of $S$.
(2) Let $f$ be a permutation of $S$. Then the inverse of $f$ is a permutation of $S$.

Proof. Well-known.
Lemma 10.3. Let $S$ be a set. The set of all permutations, under the operation of composition of permutations, forms a group $A(S)$.
Proof. (10.2) implies that the rule of multiplication is well-defined. We check the three axioms for a group.

We already proved that composition of functions is associative.
Let $i: S \longrightarrow S$ be the identity function from $S$ to $S$. Then $i$ is a permutation. Let $f$ be a permutation of $S$. Clearly $f \circ i=i \circ f=f$. Thus $i$ acts as an identity.

Let $f$ be a permutation of $S$. Then the inverse $g$ of $f$ is a permutation of $S$ and $f \circ g=g \circ f=i$, by definition. Thus inverses exist and $G$ is a group.

Lemma 10.4. Let $S$ be a finite set with $n$ elements.
Then $A(S)$ has $n$ ! elements.
Proof. Well-known.
Definition 10.5. The group $S_{n}$ is the set of permutations of the first $n$ natural numbers.

We want a convenient way to represent an element of $S_{n}$. The first way is to write an element $\sigma$ of $S_{n}$ as a matrix.

$$
\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 5 & 4 & 2
\end{array}\right) \in S_{5} .
$$

Thus, for example, $\sigma(3)=5$. With this notation it is easy to write down products and inverses. For example suppose that

$$
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 5 & 4 & 2
\end{array}\right) \quad \tau=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 3 & 1 & 2 & 5
\end{array}\right) .
$$

Then

$$
\tau \sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 5 & 2 & 3
\end{array}\right)
$$

On the other hand

$$
\sigma \tau=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 3 & 1 & 2
\end{array}\right)
$$

In particular $S_{5}$ is not abelian.
The problem with this way of representing elements of $S_{n}$ is that we don't see much of the structure of $\tau$ this way. For example, it is very hard to figure out the order of $\tau$ from this representation.

Definition 10.6. Let $\tau$ be an element of $S_{n}$.
We say that $\tau$ is a $k$-cycle if there are integers $a_{1}, a_{2}, \ldots, a_{k}$ such that $\tau\left(a_{1}\right)=a_{2}, \tau\left(a_{2}\right)=a_{3}$, and $\tau\left(a_{k}\right)=a_{1}$ and $\tau$ fixes every other integer.

More compactly

$$
\tau(j)= \begin{cases}a_{i+1} & \text { if } j=a_{i} \text { and } i<k \\ a_{1} & \text { if } j=a_{k} \\ j & \text { otherwise }\end{cases}
$$

For example

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right)
$$

is a 4-cycle in $S_{4}$ and

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 5 & 3 & 2 & 4
\end{array}\right)
$$

is a 3 -cycle in $S_{5}$.
Now given a $k$-cycle $\tau$, there is an obvious way to represent it, which is much more compact than the first notation.

$$
\tau=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right)
$$

Thus the two examples above become,

$$
(1,2,3,4)
$$

and

$$
(2,5,4)
$$

Note that there is some redundancy. For example, obviously

$$
(2,5,4)=(5,4,2)=(4,2,5)
$$

A two cycle is more often called a transposition. The tranposition

$$
(a, b)
$$

switches $a$ and $b$ and fixes everything else.
Note that a $k$-cycle has order $k$.

Definition-Lemma 10.7. Let $\sigma$ be any element of $S_{n}$.
Then $\sigma$ may be expressed as a product of disjoint cycles. This factorisation is unique, ignoring 1-cycles, up to order. The cycle type of $\sigma$ is the lengths of the corresponding cycles.

Proof. We first prove the existence of such a decomposition. Let $a_{1}=1$ and define $a_{k}$ recursively by the formula

$$
a_{i+1}=\sigma\left(a_{i}\right) .
$$

Consider the set

$$
\left\{a_{i} \mid i \in \mathbb{N}\right\}
$$

As there are only finitely many integers between 1 and $n$, we must have some repetitions, so that $a_{i}=a_{j}$, for some $i<j$. Pick the smallest $i$ and $j$ for which this happens. Suppose that $i \neq 1$. Then $\sigma\left(a_{i-1}\right)=a_{i}=\sigma\left(a_{j-1}\right)$. As $\sigma$ is injective, $a_{i-1}=a_{j-1}$. But this contradicts our choice of $i$ and $j$. Let $\tau$ be the $j$-cycle $\left(a_{1}, a_{2}, \ldots, a_{j}\right)$. Then $\rho=\sigma \tau^{-1}$ fixes each element of the set

$$
\left\{a_{i} \mid i \leq j\right\}
$$

Thus by an obvious induction, we may assume that $\rho$ is a product of $k-1$ disjoint cycles $\tau_{1}, \tau_{2}, \ldots, \tau_{k-1}$ which fix this set.

But then

$$
\sigma=\rho \tau=\tau_{1} \tau_{2} \ldots \tau_{k}
$$

where $\tau=\tau_{k}$.
Now we prove uniqueness. Suppose that $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ and $\tau=$ $\tau_{1} \tau_{2} \ldots \tau_{l}$ are two factorisations of $\sigma$ into disjoint cycles. Suppose that $\sigma_{1}(i)=j$. Then for some $p, \tau_{p}(i) \neq i$. By disjointness, in fact $\tau_{p}(i)=j$. Now consider $\sigma_{1}(j)$. By the same reasoning, $\tau_{p}(j)=\sigma_{1}(j)$. Continuing in this way, we get $\sigma_{1}=\tau_{p}$. But then just cancel these terms from both sides and continue by induction.

Example 10.8. Let

$$
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 1 & 5 & 2
\end{array}\right)
$$

Look at 1 . 1 is sent to 3 . But 3 is sent back to 1 . Thus part of the cycle decomposition is given by the transposition $(1,3)$. Now look at what is left $\{2,4,5\}$. Look at 2 . Then 2 is sent to 4 . Now 4 is sent to 5 . Finally 5 is sent to 2 . So another part of the cycle type is given by the 3 -cycle $(2,4,5)$.

I claim then that

$$
\sigma=(1,3)(2,4,5)=(2,4,5)(1,3)
$$

This is easy to check. The cycle type is $(2,3)$.
As promised, it is easy to compute the order of a permutation, given its cycle type.

Lemma 10.9. Let $\sigma \in S_{n}$ be a permutation, with cycle type $\left(k_{1}, k_{2}, \ldots, k_{l}\right)$.
The the order of $\sigma$ is the least common multiple $m$ of $k_{1}, k_{2}, \ldots, k_{l}$.
Proof. Let $k$ be the order of $\sigma$ and let $\sigma=\tau_{1} \tau_{2} \ldots \tau_{l}$ be the decomposition of $\sigma$ into disjoint cycles of length $k_{1}, k_{2}, \ldots, k_{l}$.

Pick any integer $h$. As $\tau_{1}, \tau_{2}, \ldots, \tau_{l}$ are disjoint, it follows that

$$
\sigma^{h}=\tau_{1}^{h} \tau_{2}^{h} \ldots \tau_{l}^{h}
$$

Moreover the RHS is equal to the identity, if and only if each individual term is equal to the identity.

It follows that

$$
\tau_{i}^{k}=e
$$

In particular $k_{i}$ divides $k$. Thus the least common multiple, $m$ of $k_{1}, k_{2}, \ldots, k_{l}$ divides $k$. But $\sigma^{m}=\tau_{1}^{m} \tau_{2}^{m} \tau_{3}^{m} \ldots \tau_{l}^{m}=e$. Thus $m$ divides $k$ and so $k=m$.

Note that (10.7) implies that the cycles generate $S_{n}$. It is a natural question to ask if there is a smaller subset which generates $S_{n}$. In fact the 2-cycles generate.

Lemma 10.10. The transpositions generate $S_{n}$.
Proof. It suffices to prove that every permutation is a product of transpositions.

We give two proofs of this fact.
Here is the first proof. As every permutation $\sigma$ is a product of cycles, it suffices to check that every cycle is a product of transpositions.

Consider the $k$-cycle $\sigma=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. I claim that this is equal to

$$
\sigma=\left(a_{1}, a_{k}\right)\left(a_{1}, a_{k-1}\right)\left(a_{1}, a_{k-2}\right) \ldots\left(a_{1}, a_{2}\right) .
$$

It suffices to check that they have the same effect on every integer $j$ between 1 and $n$. Now if $j$ is not equal to any of the $a_{i}$, there is nothing to check as both sides fix $j$. Suppose that $j=a_{i}$. Then $\sigma(j)=a_{i+1}$. On the other hand the the transposition $\left(a_{1}, a_{i}\right)$ sends $j$ to $a_{1}$ and the next transposition then sends $a_{1}$ to $a_{i+1}$. No other of the remaining transpositions have any effect on $a_{i+1}$. Thus the RHS also sends $j=a_{i}$ to $a_{i+1}$. As both sides have the same effect on $j$, they are equal. This completes the first proof.

To see how the second proof goes, think of a permutation as just being a rearrangement of the $n$ numbers (like a deck of cards). If we can
find a product of transpositions, that sends this rearrangement back to the trivial one, then we have shown that the inverse of the corresponding permutation is a product of transpositions. Since a transposition is its own inverse, it follows that the original permutation is a product of transpositions (in fact the same product, but in the opposite order). In other words if

$$
\tau_{k} \ldots \tau_{3} \cdot \tau_{2} \cdot \tau_{1} \cdot \sigma=e
$$

then multiplying on the right by $\tau_{i}$, in the opposite order, we get

$$
\sigma=\tau_{1} \cdot \tau_{2} \cdot \tau_{3} \cdot \ldots \tau_{k}
$$

The idea is to put back the cards into the correct position, one at a time. Suppose that the first $i-1$ cards are in the correct position. Suppose that the $i$ th card is in position $j$. As the first $i-1$ cards are in the correct position, $j \geq i$. We may assume that $j>i$, otherwise there is nothing to do. Now look at the transposition $(i, j)$. This puts the $i$ th card into the correct position. Thus we are done by induction on $i$.

