10. PERMUTATION GROUPS

Definition 10.1. Let S be a set. A permutation of S is simply a
bijection f: S — S.

Lemma 10.2. Let S be a set.

(1) Let f and g be two permutations of S. Then the composition of
f and g is a permutation of S.

(2) Let f be a permutation of S. Then the inverse of f is a permu-
tation of S.

Proof. Well-known. O

Lemma 10.3. Let S be a set. The set of all permutations, under the
operation of composition of permutations, forms a group A(S).

Proof. implies that the rule of multiplication is well-defined. We
check the three axioms for a group.

We already proved that composition of functions is associative.

Let ¢: S — S be the identity function from S to S. Then 7 is a
permutation. Let f be a permutation of S. Clearly foi=1i0 f = f.
Thus 7 acts as an identity.

Let f be a permutation of S. Then the inverse g of f is a permutation
of Sand fog=go f =1, by definition. Thus inverses exist and G is
a group. U

Lemma 10.4. Let S be a finite set with n elements.
Then A(S) has n! elements.

Proof. Well-known. 0

Definition 10.5. The group S,, is the set of permutations of the first
n natural numbers.

We want a convenient way to represent an element of S,,. The first
way is to write an element o of S,, as a matrix.

1 2 3 45 cg
3154 2 o
Thus, for example, 0(3) = 5. With this notation it is easy to write
down products and inverses. For example suppose that

(12345 (12345
=\3 15 4 2 T™\4 312 5)

(12345
=114 5 2 3)
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On the other hand
(12345
T=\4 5 31 2)
In particular S5 is not abelian.
The problem with this way of representing elements of S,, is that we

don’t see much of the structure of 7 this way. For example, it is very
hard to figure out the order of 7 from this representation.

Definition 10.6. Let 7 be an element of S,,.

We say that T is a k-cycle if there are integers ay,as, . ..,a such
that T(a1) = ag, 7(az) = as, and 7(ax) = a1 and T fizes every other
integer.

More compactly

aiv1 if j=a; andi <k
T =qa  ifj=aw
J otherwise.

12 3 4
2 3 41
1 2 3 45
1 53 2 4)°
is a 3-cycle in Ss.

Now given a k-cycle 7, there is an obvious way to represent it, which
is much more compact than the first notation.

For example

is a 4-cycle in Sy and

T = (ay,as,as,...,a).
Thus the two examples above become,
(1,2,3,4)
and
(2,5,4).
Note that there is some redundancy. For example, obviously
(2,5,4) = (5,4,2) = (4,2,5).
A two cycle is more often called a transposition. The tranposition
(a,b)

switches a and b and fixes everything else.

Note that a k-cycle has order k.
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Definition-Lemma 10.7. Let o be any element of S,,.

Then o may be expressed as a product of disjoint cycles. This fac-
torisation is unique, ignoring 1-cycles, up to order. The cycle type of
o 1is the lengths of the corresponding cycles.

Proof. We first prove the existence of such a decomposition. Let a; = 1
and define a; recursively by the formula

Ajy1 = O'((li).

Consider the set

{CLZ‘ | 1 €N }
As there are only finitely many integers between 1 and n, we must
have some repetitions, so that a; = a;, for some ¢ < j. Pick the
smallest 7 and j for which this happens. Suppose that i # 1. Then
o(ai—1) = a; = o(aj_1). As o is injective, a;—y = a;_;. But this
contradicts our choice of ¢ and j. Let 7 be the j-cycle (a1, as,...,a;).
Then p = o7~ fixes each element of the set

{aili<j}.

Thus by an obvious induction, we may assume that p is a product

of k — 1 disjoint cycles 71, 79, ..., Tx_1 which fix this set.

But then
0O=pT =TTy...Tk,

where 7 = 7.

Now we prove uniqueness. Suppose that ¢ = g105...04 and 7 =
71Ty ... 7 are two factorisations of ¢ into disjoint cycles. Suppose that
o1(i) = j. Then for some p, 7,(i) # i. By disjointness, in fact 7,(i) = j.
Now consider o;(j). By the same reasoning, 7,(j) = o1(j). Continuing
in this way, we get 01 = 7,,. But then just cancel these terms from both
sides and continue by induction. O

(1 2 3 45
7= (3 415 2) '

Look at 1. 1 is sent to 3. But 3 is sent back to 1. Thus part of the
cycle decomposition is given by the transposition (1,3). Now look at
what is left {2,4,5}. Look at 2. Then 2 is sent to 4. Now 4 is sent to
5. Finally 5 is sent to 2. So another part of the cycle type is given by
the 3-cycle (2,4,5).

I claim then that

o =(1,3)(2,4,5) = (2,4,5)(1,3).
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This is easy to check. The cycle type is (2, 3).
As promised, it is easy to compute the order of a permutation, given
its cycle type.

Lemma 10.9. Let o € S,, be a permutation, with cycle type (ky, ko, ..., k).
The the order of o is the least common multiple m of ki, ks, ..., k.

Proof. Let k be the order of o and let ¢ = 775 ... 7; be the decompo-
sition of ¢ into disjoint cycles of length ki, ko, ..., k.
Pick any integer h. As 7y, 7y,..., 7 are disjoint, it follows that
ol = TlhTQh .. .Tlh.
Moreover the RHS is equal to the identity, if and only if each individual
term is equal to the identity.
It follows that

F=e.
In particular k; divides k. Thus the least common multiple, m of
ki, ko, ..., ki divides k. But o™ = 7"75"13" ... 7" = e. Thus m divides
k and so k = m. 0

Note that (10.7)) implies that the cycles generate S,,. It is a natural
question to ask if there is a smaller subset which generates S,,. In fact
the 2-cycles generate.

Lemma 10.10. The transpositions generate S,,.

Proof. 1t suffices to prove that every permutation is a product of trans-
positions.

We give two proofs of this fact.

Here is the first proof. As every permutation o is a product of cycles,
it suffices to check that every cycle is a product of transpositions.

Consider the k-cycle 0 = (ay,as,...,a;). I claim that this is equal
to

o= (&1, Gk)(@b kal)(ala ak72> cee (ala az)-

It suffices to check that they have the same effect on every integer j
between 1 and n. Now if j is not equal to any of the a;, there is nothing
to check as both sides fix j. Suppose that j = a;. Then o(j) = a;41-
On the other hand the the transposition (a1, a;) sends j to a; and the
next transposition then sends a; to a;;1. No other of the remaining
transpositions have any effect on a;,1. Thus the RHS also sends j = a;
to a;11. As both sides have the same effect on j, they are equal. This
completes the first proof.

To see how the second proof goes, think of a permutation as just be-

ing a rearrangement of the n numbers (like a deck of cards). If we can
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find a product of transpositions, that sends this rearrangement back to
the trivial one, then we have shown that the inverse of the correspond-
ing permutation is a product of transpositions. Since a transposition
is its own inverse, it follows that the original permutation is a product
of transpositions (in fact the same product, but in the opposite order).
In other words if

Tk ...T3°-T2"T1 0 = €,
then multiplying on the right by 7;, in the opposite order, we get

O =1T1T2°-T3"°...Tk-

The idea is to put back the cards into the correct position, one at
a time. Suppose that the first © — 1 cards are in the correct position.
Suppose that the ith card is in position j. As the first ¢ — 1 cards are
in the correct position, 7 > i. We may assume that j > 7, otherwise
there is nothing to do. Now look at the transposition (4, 7). This puts
the ith card into the correct position. Thus we are done by induction
on i. U
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