
FINAL EXAM

MATH 100A, UCSD, AUTUMN 23

You have three hours.

There are 8 problems, and the total number of

points is 95. Show all your work. Please make

your work as clear and easy to follow as possible.

Name:

Signature:

Student ID #:

Section instructor:

Section Time:

Problem Points Score

1 15

2 10

3 15

4 15

5 10

6 10

7 10

8 10

9 10

10 10

11 10

12 10

13 10

Total 95
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1. (15pts) Give the definition of the centre Z(G) of a group G.

Z(G) = { z ∈ G | zg = gz for all g ∈ G }.

(ii) Give the definition of the kernel of a homomorphism.

If
φ : G −→ G′

is a homomorphism then

Ker(φ) = { g ∈ G |φ(g) = g }.

(iii) Give the definition of Sn.

The group of permutations of the first n integers.
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2. (10pts) Compute (23)37 mod 17.

First note that 23 is congruent to 6 modulo 17. So it is enough to
calculate 637 modulo 17. 17 is prime and so by Fermat’s little theorem
we have 616 is congruent to one modulo 17. Putting all of this together
and working modulo 17 we have

(23)37 = 637

= 632 · 65

= (616)2 · 65

= 65

= 6 · (36)2

= 6 · 22

= 24

= 7.

2



3. (15pts) (i) Exhibit a proper normal subgroup H of D6. To which

group is H isomorphic to?

Let
H = { I, R,R2, R3, R4, R5 }

be the subgroup of rotations. H is normal in D6 as it has index 2.
H = 〈R〉 ' Z6.

(ii) Give the left cosets of H inside D6.

H = [I] = { I, R,R2, R3, R4, R5 } and H = [F1] = {F1, F2, F3, D1, D2.D3 },

where F1, F2 and F3 are all of the side flips and D1, D2 and D3 are all
of the diagonal flips.

(iii) To which group is D6/H isomorphic to?

This has order two, so it is isomorphic to Z2.
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4. (15pts) True of false? If true then give a proof and if false then give

a counterexample. Let G be a group.

(i) The centre Z(G) of G is normal in G.

True. If z ∈ Z and g ∈ G then

gzg−1 = zgg−1

= ze

= z ∈ Z.

Thus Z is normal in G.

(ii) The centraliser C(a) of an element is normal in G.

False. Let G = S3 and let a = (1, 2). Then

C(a) = {e, (1, 2)}.

If g = (2, 3) then
gag−1 = (1, 3) /∈ C(a).

Thus C(a) is not normal in G.

(iii) The kernel Kerφ of a homomorphism φ : G −→ G′ is normal in

G.

True. Let K be the kernel of φ and let e′ ∈ G′ be the identity. If k ∈ K
and g ∈ G then

φ(gkg−1) = φ(g)φ(k)φ(g−1)

= φ(g)e′φ(g)−1

= φ(g)φ(g)−1

= e′

Thus gkg−1 ∈ K and so K is normal in G.
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5. (10pts) Let G be a group and let H be a subgroup. Prove that the

following are equivalent.

(1) H is normal in G.
(2) For every g ∈ G, gHg−1 = H.
(3) For every a ∈ G, aH = Ha.
(4) The set of left cosets is equal to the set of right cosets.

Suppose that H is normal in G. Then for all a ∈ G,

aHa−1 ⊂ H.

Taking a = g and a = g−1 we get

gHg−1 ⊂ H and g−1Hg ⊂ H.

Multiplying the second inclusion on the left by g and on the right by
g−1 we get,

H ⊂ gHg−1.

Hence (2) holds. Now suppose that (2) holds. Multiplying

aHa−1 = H,

on the right by a, we get
aH = Ha.

Hence (3) holds. Now suppose that (3) holds. Then (4) certainly holds.
Finally suppose (4) holds. Pick g ∈ G. Then g ∈ gH and g ∈ Hg.
As the set of left cosets equals the set of right cosets, it follows that
gH = Hg. Multiplying on the right by g−1 we get

gHg−1 = H.

As g is arbitrary, it follows that H is normal in G. Hence (1). Thus
the four conditions are certainly equivalent.

5



6. (10pts) True of false? If true then give a proof and if false then give

a counterexample.

Let G be a group and define the function

φ : G −→ G by φ(g) = g−1.

(i) φ is a homomorphism.

False. Let G = S3 and let a = (1, 2), b = (2, 3). Then

φ(ab) = (ab)−1

= b−1a−1

= ba

= (1, 2, 3)

6= (1, 3, 2)

= ab

= a−1b−1

= φ(a)φ(b).

(ii) If G is abelian then φ is a homomorphism.

True.

φ(ab) = (ab)−1

= b−1a−1

= a−1b−1

= φ(a)φ(b).
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7. (10pts) Prove that the transpositions τ1, τ2, . . . , τn−1, given by

τi = (i, i+ 1) for 1 ≤ i ≤ n− 1,

generate Sn.

Let σ be a permutation. Then σ defines an ordering of the integers
from one to n,

a1, a2, . . . , an where ai = σ(i).

We first write down a product of τ1, τ2, . . . , τn−1 that puts these integers
into the usual order

1, 2, 3, . . . , n.

It is convenient to imagine that we have cards numbered from 1 to n
and we are trying to put the cards into the usual order by switching
adjacent cards.
Suppose that the first i cards have been put into the correct order.
Consider the position of the i+1th card. If it is in the i+1th position
then there is nothing to do. Otherwise it must be in a higher position
j, j > i + 1. It we switch the card in the jth position with the card
in the j − 1th position then now the i + 1th card is in position j − 1.
Continuing in this way we can put the i + 1th card into the i + 1th
position. By induction on i it then follows we can put all of the cards
into the correct order.
Therefore we have found a product of τ1, τ2, . . . , τn−1 that undoes the
action of σ, that is, we have written σ−1 as a product of τ1, τ2, . . . , τn−1.
Since the inverse of a transposition is a transposition and the inverse of
a product is the product of the inverses in the reverse order, it follows
that σ is the product of the same transpositions but in the reverse
order.
Thus τ1, τ2, . . . , τn−1 generate Sn.
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8. (10pts) State and prove one of the Isomorphism Theorems.
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Bonus Challenge Problems

9. (10pts) Prove the rest of the Isomorphism Theorems.

9



10. (10pts) Classify all groups of order 22.

First suppose that G is abelian. Then

G ' Z22

is cyclic, by the classification of finitely generated abelian groups.
Now suppose that G is not abelian. Consider the possible order of an
element of G. As this divides 22, it must be one of 1, 2, 11 and 22.
If there is an element of order 22 then G is cyclic. But this is not
possible as we are assuming that G is not abelian. There is only one
element of order 1, the identity. If every other element has order 2 then
G is abelian.
So there must be an element a of order 11. Let H = 〈a〉. H has index
2 and so H is normal in G. Pick b ∈ G not belonging to H. Then

b2H = (bH)2

= h.

Thus b2 ∈ H. If b2 6= e then b2 has order 11 and so b has order 22,
contrary to our assumptions.
Thus b has order 2. Consider

Aut(Z11) ' U11.

22 = 4, 42 = 16 = 5 and 45 = 2 · 5 6= 1. Thus 2 ∈ U11 has order 10
and U11 is cyclic of order 10. But then 10 = −1 is the only element of
order 2.
Conjugation by b defines an element of Aut(Z11) of order 2. By what
we proved this means

bab−1 = a−1.

But then G is isomorphic to the Dihedral group D11 of order 22.
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11. (10pts) Let G be a simple group of order n, where 1 < n < 60.
Show that n is prime.
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12. (10pts) If G is a finitely generated group whose automorphism

group is trivial then prove that G has order at most 2.

In fact this result is true without the hypothesis that G is finitely
generated.
Suppose that a does not belong to the centre of G, so that ab 6= ba for
some b ∈ G. Let φ be the inner automorphism of G defined by a,

φ : G −→ G given by φ(g) = aga−1.

Then

φ(b) = aba−1

6= b.

Thus φ is not the identity in Aut(G).
It follows that we may assume that G is abelian. In this case

φ : G −→ G given by φ(g) = g−1,

is an automorphism of G. If g 6= g−1 then

φ(g) = g−1

6= g.

Thus we may assume that every element of G has order 2.
By the classification of finitely generated abelian groups, we know that
G is isomorphic to a product of cyclic groups (this is the only place
we use the hypothesis that G is finitely generated). If every element
has order two then each term in the product must be Z2. So G is
isomorphic to a product

G ' Z2 × Z2 × · · · × Z2.

Suppose that there is more than one term in the product. Let

φ : Z2 × Z2 × · · · × Z2 −→ Z2 × Z2 × · · · × Z2

be the function which switches the entries in the first two factors. Then
φ is a non-trivial automorphism of G.
Thus we may assume that there is at most one factor. But then G has
order at most two.
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13. (10pts) Let G be a simple group of order 168. Show that G is

isomorphic to a subgroup of A7.

First note that if G is simple and G ⊂ Sn then G ⊂ An, since otherwise
G ∩ An is a subgroup of G of index 2 and any such is automatically
normal in G.
Thus it is enough to show that G is isomorphic to a subgroup of S7.
Suppose that there is a non-trivial representation

φ : G −→ Sk.

The kernel of φ must be trivial as it is a normal subgroup and so G
is isomorphic to a subgroup of Sk. As the order of G divisible by 7, it
follows that k ≥ 7 and if k = 7 then we are done.
In particular it is enough to exhibit a subgroup of index k ≤ 7 (for
example, to show that there are 1 < k ≤ 7 Sylow p-subgroups).

168 = 23 · 3 · 7.

We count the number of Sylow p-subgroups for p = 2, 3 and 7.
Let x be the number of Sylow 7-subgroups. Then x is congruent to 1
modulo 7, so that

x = 1, 8, 15, 22, . . . .

x 6= 1 as G is simple. As x divides 23 · 3 the only possibility is that
x = 8. It follows that G is isomorphic to a subgroup of S8.
This almost gives us what we want. We need to count the other Sylow
p-subgroups. Observe that 8 Sylow 7-subgroups gives us 8 · 6 = 48
elements of order 7. Note also that if the order of an element of G is
divisible by 7 then it is seven. Indeed, consider the cycle type of the
corresponding permutation in S8. There must be a 7-cycle and there
is not room for anything else.
Let y be the number of Sylow 3-subgroups. Then y is congruent to 1
modulo 3, so that

y = 1, 4, 7, 10, . . . .

y 6= 1 as G is simple. As y divides 23 · 7 the only possibility is that
y = 4, y = 7, or y = 28. As above, we may assume that y = 28. Then
there are 28 · 2 = 56 elements of order 3.
Let z be the number of Sylow 2-subgroups. Then z is congruent to 1
modulo 2, so that

z = 1, 3, 5, 7, . . . .

z 6= 1 as G is simple.
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We may suppose that z = 21. Let P and Q be two Sylow 2-subgroups.
Consider their intersection H = P ∩ Q. Suppose that this is always
trivial. Then there would be 21 · 7 = 147 elements of G whose order is
a power of two. This gives us

168 < 48 + 56 + 147

distinct elements of G, clearly asburd.
Thus H sometimes has order at least two. Let N be the normaliser of
H in G and let n be the order of N .
Suppose that H has order 4. Then H is normal in P , as the index of
H in P is two, and so P is contained in N . It follows that 8 divides n
and that n > 8 (as Q is also contained in N). But then n ≥ 24 so that
the index of N is at most 7. We are done in this case.
Suppose that H = {e, h} has order 2. If g ∈ N then ghg−1 ∈ H and
ghg−1 6= e. But then ghg−1 = h so that gh = hg. Thus N = C(h).
Suppose that 7 divides n. Then we may find g ∈ N of order 7. In
this case gh is an element of order 14, which we already decided is not
possible. Thus 7 does not divide n.
Let K be a subgroup of P of order 4 containing H. As the index of H
in K is two it follows that H is normal in K. Therefore K is contained
in N . It follows that 4 divides n and that n > 4. Thus n is divisible
by 12.
Let w be the number of Sylow 3-subgroups of N . Then w is congruent
to 1 modulo 3, so that

w = 1, 4, 7, 10, . . . .

Suppose that w = 1. Then there is a unique Sylow 3-subgroup R
contained in N . Thus N is contained in the normaliser M of R in G
and M has index e, a divisor of 2 · 7. But e = y = 28.
Thus w ≥ 4 and N contains at least 8 = 4 · 2 elements of order 3. On
the other hand N contains K and least one more element of Q. Thus
n ≥ 24 > 12 and the index of N is at most 7.
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