MODEL ANSWERS TO THE NINTH HOMEWORK

1. The function
1

22—z

is not holomorphic at z = 0 and at z = 1. There are two relevant
circles, the circle of radius 1 centred at —1 and the circle of radius 2
centred at —1. The point 1/2 is between these two circles, so we want
to compute the Laurent series for the annulus

U={zeC|l<|z+1 <2}

We have
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The first function is holomorphic on the disk of radius 2 centred at —1.

The second function is holomorphic on the region |z 4+ 1| > 1 and is
zero at infinity. We have
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This is a power series centred at z = —1 with radius of convergence 2.
For the second function we have
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is the Laurent expansion.

(b) The function

z—1

z+1
is not holomorphic at z = —1. There are two relevant circles, the circle
of radius 0 centred at —1 and the circle of radius oo centred at —1.
The point 1/2 is between these two circles, so we want to compute the
Laurent series for the annulus

U={zeCl|0<|z+1] <0}

We have
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This is a Laurent expansion and so it is the Laurent expansion.

2. (a) We have
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This has a simple pole at z = 0.
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(b) We have
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It follows that the residue at z =0 is —1/2.
(c) As sinh z has a simple zero at 0 it follows that

sinh z

24(1 — 22)
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has a pole of order 3 at 0. We could try multiplying by 2% and dif-
ferentiating twice to get the residue; this doesn’t seem to work very
well.

If we expand the power series for sinh z and for the reciprocal of 1 — 22
we get:

sinh 2 1 23 20 9 4

We want the coefficient of 1/z after we multiply out. So we want the
coefficient of z® from the second two expressions. This is
1 7
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Therefore the residue is 7/6.
3. As (z —a)"f(z) is bounded near a and it has an isolated singularity
at a, it follows that (z — a)"f(z) has a removable singularity at z = a.
In particular there is a holomorphic function g(z) such that

(z —a)"f(2) = 9(2).
Suppose that g(z) has a zero of order m at a. Then there is a function
h(z) holomorphic at a such that

g(z) = (z —a)™h(z) and h(a) # 0.
It follows that
(z—a)"f(z) = (z — a)"h(z).
If m > n then
f(z) =(z=a)"""h(2)

has a removable singularity at a. Otherwise
h(z
fe) = 2

(z —a)yr—m’
In this case f(z) has a pole order at most n.
4. (a) We use the residue theorem. The function
2

cos 2
has isolated singularities at

z=+47/2

which are both inside the circle of radius 2, as 7/2 < 2. cosz has
simple singularities at these points and so the function
z
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has simple poles at +7/2. To compute the residue at /2 we multiply
by (z — 7/2) and take a limit:

—7/2
Resﬂ/z i = lim M
COS 2 z—7/2 COS 2
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To compute the residue at —m/2 we multiply by (z + 7/2) and take a
limit:
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Now we apply the residue theorem:

z . z . Z
dz = 2mi Res, /o + 2mi Res_, /o
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(b) The function
e—z

has an isolated singularity at zero, which is inside the circle. As the
function has a double pole at 0, to compute the residue we multiply by
2? and differentiate once:

e ?
Resg = lim —e™~?
22 z—0

=—1.

Now we apply the residue theorem:

e ? , e ”
j[ 5 dz = 2mi Resg
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= —2m1.

(¢) The function

Z261/z
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has a singularity at = = 0. As we have an essential singularity we
simply have to compute the Laurent series:
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Thus the residue is ]
Resg 22e!/* = =

Now we apply the residue theorem:

j{ 22e'* dz = 27i Resg 2%e'/*
|z|=1



