
MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. We have to compute the following limit (if it exists at all)

lim
z→a

f(z)− f(a)

z − a
.

As a first step let us manipulate the numerator.

f(z)− f(a) =

∫
γ

h(t)

t− z
dt−

∫
γ

h(t)

t− a
dt

=

∫
γ

h(t)

t− z
− h(t)

t− a
dt

=

∫
γ

h(t)(t− a)− h(t)(t− z)

(t− z)(t− a)
dt

=

∫
γ

h(t)(z − a)

(t− z)(t− a)
dt

= (z − a)

∫
γ

h(t)

(t− z)(t− a)
dt.

If we divide through by z − a we get∫
γ

h(t)

(t− z)(t− a)
dt.

If we take the limit as z approaches a we get∫
γ

h(t)

(t− a)2
dt

(this is a uniform limit as a is at least a fixed distance from γ). It
follows that the limit exists, so that f is a holomorphic function and
the derivative at a is ∫

γ

h(t)

(t− a)2
dt.

2. (a) As 1 belongs to the open disk centred at 0 of radius 2 and zn is
entire, if we apply Cauchy’s integral formula then we get∮

|z|=2

zn

z − 1
dz = 2πi1n

= 2πi.
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(b) The function
zn

z − 2
is holomorphic on the open disk of radius 3/2, which includes the closed
unit disk, so that Cauchy’s Theorem implies∮

|z|=1

zn

z − 2
dz = 0.

(c) As sin z is entire, by Cauchy’s integral formula we get∮
|z|=1

sin z

z
dz = 2πi sin 0

= 0.

(d) As cosh z is holomorphic and the second derivative of cosh z is
cosh z we get ∮

|z|=1

cosh z

z3
dz =

2πi

2!
cosh 0

= πi.

(e) There are two cases. If m ≤ 0 then

ez

zm
= z−mez,

is entire, so that the integral is zero by Cauchy’s theorem. If m > 0
then we have to compute the (m− 1)th derivative of ez at 0, which is
1 and divide by (m− 1)!. Putting this together we get∮

|z|=1

ez

zm
dz =

{
2πi

(m−1)! if m > 0

0 if m ≤ 0.

(f) First note that the distance of 0 to 1 + i is

√
2 >

5

4
.

Therefore the open disk of radius 5/4 centred at 1 + i contains no non-
positive real numbers. In particular Log z is a holomorphic function on
an open set containing the closed disk of radius 5/4 centred at 1 + i.
The derivative of Log z is 1/z. As 1 belongs to the disk of radius 5/4
centred at 1 + i, we have∮

|z−1−i|=5/4

Log z

(z − 1)2
dz =

2πi

1

1

1

= πi.
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(g) Note that

1

(z2 − 4)ez
=

e−z

(z2 − 4)

is holomorphic on the open disk of radius 2 centred at the origin. It’s
derivative is

−e−z(z2 − 4)− e−z2z
(z2 − 4)2

= e−z
4− 2z − z2

(z2 − 4)2
.

We have ∮
|z|=1

dz

z2(z2 − 4)ez
=

2πi

1
e0

4

42

=
πi

2
.

(h) The circle centred at 1 with radius 2 contains both 0 and 2 but not
−2. There are two obvious ways to deal with the fact that the integrand
is not defined at two points of the open disk of radius 2 centred at 1.
The first is to use partial fractions to split the integrand into two pieces,
one with a denominator that vanishes at 0 and the other that vanishes
at 2 and then integrate both pieces separately.
We have

1

z2(z2 − 4)
=
A

z2
+

B

(z2 − 4)
.

This gives

1 = A(z2 − 4) +Bz2.

It follows that

A = −1

4
and B =

1

4
.

Thus ∮
|z−1|=2

dz

z2(z2 − 4)ez
=

1

4

∮
|z−1|=2

e−zdz

(z2 − 4)
− 1

4

∮
|z−1|=2

e−zdz

z2

=
1

4
2πi

e−2

4
− 1

4

2πi

1
− e0

=
1

8
πie−2 +

1

2
πi.

The second way to deal with the fact that the denominator is zero at
two numbers is to use Cauchy’s theorem. The disk of radius 2 centred
at 1 contains two disks of radius 1/2, one centred at 0 and the other
centred at 2. If we remove both of these disks the resulting region
U has boundary the circle of radius 2 and the two circles of radius
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1/2 centred at 0 and 2, but with the opposite orientation. Cauchy’s
theorem impies that ∫

∂U

dz

z2(z2 − 4)ez
= 0.

It follows that∮
|z−1|=2

dz

z2(z2 − 4)ez
=

∮
|z|=1/2

dz

z2(z2 − 4)ez
+

∮
|z−2|=1/2

dz

z2(z2 − 4)ez
.

The first integral we computed in (g), as the integral around a circle
of radius 1/2 or 1 is the same. For the second integral we have∮

|z−2|=1/2

dz

z2(z2 − 4)ez
= 2πi

1

22

1

2 + 2
e−2

= 2πi
1

22

1

2 + 2
e−2

=
1

8
πie−2.

Putting this together we get∮
|z−1|=2

dz

z2(z2 − 4)ez
=
πi

2
+

1

8
πie−2,

the same as before.
3. The rectangle with vertices ±R and ±R + it has four sides,

γ = γ1 + γ2 + γ3 + γ4,

where γ1 is the horizontal line from −R to R, γ2 is the vertical line
from R to R+ it, γ3 is the horizontal line from R+ it to −R+ it, and
γ4 is the vertical line from −R + it to −R.
The function e−z

2/2 is holomorphic inside the rectangle bounded by γ
and so ∮

γ

e−z
2/2 dz = 0,

by Cauchy’s integral formula. Note that if t < 0 our choice of orienta-
tion is the reverse orientation to normal. However if you flip the sign
of zero, you still get zero.
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The length of the two paths γ2 and γ4 is t, which is independent of R.
On both γ2 and γ4 we have x = ±R and |y| ≤ |t|, and so

|e−z2/2| = e−x
2/2+y2/2

= e−x
2/2ey

2/2

= e−R
2/2ey

2/2

≤ e−R
2/2et

2/2.

Thus ∣∣∣∣∫
γ2+γ4

e−z
2/2 dz

∣∣∣∣ ≤ ∫
γ2+γ4

|e−z2/2| dz

≤
∫
γ2+γ4

|e−z2/2| dz

≤ 2let
2/2e−R

2/2.

As R goes to infinity 2let
2/2e−R

2/2 goes to zero.
For the path γ1, we use the parametrisation γ1(s) = s, s ∈ [−R,R].
We have

lim
R→∞

∫
γ1

e−z
2/2 dz = lim

R→∞

∫ R

−R
e−x

2/2 dx

=

∫ ∞
−∞

e−x
2/2 dx

=
√

2π.

For the path γ3, we use the parametrisation γ3(s) = −s + it, s ∈
[−R,R]. We have

lim
R→∞

∫
γ3

e−z
2/2 dz = − lim

R→∞

∫ R

−R
e−(x+it)

2/2 dx

=

∫ ∞
−∞

e−x
2/2−xit+t2/2 dx

= et
2/2

∫ ∞
−∞

e−x
2/2e−itx dx

Putting all of this together we get

1√
2π

∫ ∞
−∞

e−x
2/2e−itx dx = e−t

2/2.
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4. The Cauchy integral formula says that

f(a) =
1

2πi

∮
|z−a|=ρ

f(z)

z − a
dz.

We compute the RHS using the parametrisation

γ(θ) = a+ ρeiθ where θ ∈ [0, 2π].

We get

1

2πi

∮
|z−a|=ρ

f(z)

z − a
dz =

1

2πi

∫ 2π

0

f(a+ ρeiθ)

ρeθ
iρeiθ dθ

=
1

2πi

∫ 2π

0

f(a+ ρeiθ)

ρeθ
iρeiθ dθ

=
1

2π

∫ 2π

0

f(a+ ρeiθ) dθ.

Taking the real parts of both sides of the first equality gives

u(a) =
1

2π

∫ 2π

0

u(a+ ρeiθ) dθ.

Challenge Problems: (Just for fun)

4. (continued). Suppose that a is maximum of u, so that u(z) ≤ m =
u(a). Then

m = u(a)

=
1

2π

∫ 2π

0

u(a+ ρeiθ) dθ

≤ 1

2π

∫ 2π

0

m dθ

= m.

It follows that the inequality is in fact an equality. But then

u(a+ ρeiθ) = m

all the way around the circle, since the integral computes the average
value of u(z) on the circle. Thus u(z) = m for any point on any circle
in U centred at a. Thus u(z) = m on any disk centred at a. It follows
that u(z) = m on any disk in U centred at a point b where u(b) = m.
It is not hard to conclude that u(z) = m for every z ∈ U , so that u is
constant.
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Note that −u is the real part of the holomorphic function −f . If u has
a minimum then −u has a maximum and so −u is constant. But then
u is constant.
5. We have

2πi =

∮
|z|=R

1

z
dz

=

∮
|z|=R

p(z)

zp(z)
dz

=

∮
|z|=R

p(0)

zp(z)
dz +

∮
|z|=R

q(z)

p(z)
dz

=

∮
|z|=R

p(0)

zp(z)
dz

= p(0)

∮
|z|=R

1

zp(z)
dz.

To get the first equality we applied Cauchy’s integral formula. To get
the penultimate equality we applied Cauchy’s theorem to the rational
function

q(z)

p(z)
,

which is holomorphic as p(z) has no zeroes.
We now have to estimate

zp(z)

on a big circle. Note that
1

p(z)
goes to zero, as the radius R of the circle goes to infinity. The length
of the circle goes like 2πR. Cancelling of R we still get an upper bound
that goes to zero. This is not possible as 2πi is not zero.
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