MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. We have to compute the following limit (if it exists at all)
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As a first step let us manipulate the numerator.
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If we divide through by z — a we get
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If we take the limit as z approaches a we get
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(this is a uniform limit as a is at least a fixed distance from ). It
follows that the limit exists, so that f is a holomorphic function and

the derivative at a is
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2. (a) As 1 belongs to the open disk centred at 0 of radius 2 and 2" is
entire, if we apply Cauchy’s integral formula then we get
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(b) The function
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is holomorphic on the open disk of radius 3/2, which includes the closed
unit disk, so that Cauchy’s Theorem implies
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(c) As sin z is entire, by Cauchy’s integral formula we get
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(d) As coshz is holomorphic and the second derivative of coshz is
cosh z we get
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(e) There are two cases. If m < 0 then

Zm
is entire, so that the integral is zero by Cauchy’s theorem. If m > 0
then we have to compute the (m — 1)th derivative of e* at 0, which is
1 and divide by (m — 1)!. Putting this together we get
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(f) First note that the distance of 0 to 14 i is
)
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Therefore the open disk of radius 5/4 centred at 1+ 14 contains no non-
positive real numbers. In particular Log 2 is a holomorphic function on
an open set containing the closed disk of radius 5/4 centred at 1 + 1.
The derivative of Log z is 1/z. As 1 belongs to the disk of radius 5/4
centred at 1 + ¢, we have
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(g) Note that
1 e
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is holomorphic on the open disk of radius 2 centred at the origin. It’s
derivative is
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(h) The circle centred at 1 with radius 2 contains both 0 and 2 but not
—2. There are two obvious ways to deal with the fact that the integrand
is not defined at two points of the open disk of radius 2 centred at 1.
The first is to use partial fractions to split the integrand into two pieces,
one with a denominator that vanishes at 0 and the other that vanishes
at 2 and then integrate both pieces separately.

We have
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This gives
1= A(z* — 4) + B2*.
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The second way to deal with the fact that the denominator is zero at
two numbers is to use Cauchy’s theorem. The disk of radius 2 centred
at 1 contains two disks of radius 1/2, one centred at 0 and the other
centred at 2. If we remove both of these disks the resulting region

U has boundary the circle of radius 2 and the two circles of radius
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1/2 centred at 0 and 2, but with the opposite orientation. Cauchy’s

theorem impies that
d
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It follows that
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The first integral we computed in (g), as the integral around a circle
of radius 1/2 or 1 is the same. For the second integral we have
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Putting this together we get
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the same as before.
3. The rectangle with vertices £R and £ R + it has four sides,

Y=Y T2 s,

where ~; is the horizontal line from —R to R, v is the vertical line
from R to R+ it, 3 is the horizontal line from R + it to —R + it, and
74 is the vertical line from —R + it to —R.

The function e /2 is holomorphic inside the rectangle bounded by ~

and so
]46_22/2 dz =0,
¥

by Cauchy’s integral formula. Note that if £ < 0 our choice of orienta-
tion is the reverse orientation to normal. However if you flip the sign

of zero, you still get zero.
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The length of the two paths 7, and 4 is ¢, which is independent of R.
On both v, and 74 we have z = £R and |y| < |¢|, and so
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As R goes to infinity et /2R /2 goes to zero.
For the path ~;, we use the parametrisation vi(s) = s, s € [—R, R].

We have

R
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For the path -3, we use the parametrisation v3(s) = —s +it, s €
[—R, R]. We have
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Putting all of this together we get
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4. The Cauchy integral formula says that
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We compute the RHS using the parametrisation
v(0) = a + pe® where 0 €10, 2m].

We get
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Taking the real parts of both sides of the first equality gives

1 2 )
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Challenge Problems: (Just for fun)

4. (continued). Suppose that a is maximum of u, so that u(z) < m =
u(a). Then

m = u(a)

= — u(a + pew) dé
21 Jo

T
1 27
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= m.
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It follows that the inequality is in fact an equality. But then
u(a + pe?) =m

all the way around the circle, since the integral computes the average
value of u(z) on the circle. Thus u(z) = m for any point on any circle
in U centred at a. Thus u(z) = m on any disk centred at a. It follows
that u(z) = m on any disk in U centred at a point b where u(b) = m.
It is not hard to conclude that u(z) = m for every z € U, so that u is

constant.
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Note that —u is the real part of the holomorphic function — f. If u has
a minimum then —u has a maximum and so —u is constant. But then
u is constant.

5. We have

B pO) ., a(?) 4.
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To get the first equality we applied Cauchy’s integral formula. To get
the penultimate equality we applied Cauchy’s theorem to the rational
function

which is holomorphic as p(z) has no zeroes.
We now have to estimate
zp(2)

on a big circle. Note that
1

p(2)
goes to zero, as the radius R of the circle goes to infinity. The length
of the circle goes like 2 R. Cancelling of R we still get an upper bound
that goes to zero. This is not possible as 274 is not zero.



