MODEL ANSWERS TO THE SECOND HOMEWORK

1. We use DeMoivre’s theorem:
cos 46 + isin 46 = (cosf + isinh)*

= cos® 0 + 4icos® Asin @ — 6 cos? §sin? § — 4i cos 0 sin® 6 + sin’ .
Equating real and imaginary part gives

cos 46 = cos* § — 6 cos® fsin? @ + sin 0

sin46 = 4 cos® @sinf — 4 cos fsin® 6.
2. (a) The identity

= 1=(z=1)E" 2" 2+ 1)

follows just by multiplying out. See also homework 1.

(b) Suppose that ¢ is an nth root of unity and ¢ # 1.
We have

0=¢"-1
= (=D H T+ ),

As the first factor is non-zero the second factor must be zero.
3. (a) We saw that ‘

€"* = cosz+isin z.
Thus

e = cos z +isin z

e = cosz — isin .

Adding and subtracting gives

eiz + efiz . eiz _ efiz
COSZ = —— and Smz = ————
2 21

(b) This is clear from (1) and the fact that ¢** is periodic with period
2m.
(c) We have

cos(z +w) + isin(z +w) = pilz+w)

— 6izeiw

= (cos z + isin z)(cosw + i sin w)

= (cos z cosw — sin zsinw) + i(cos z sinw — sin z cos w).
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Thus
cos(z +w) +isin(z + w) = (cos z cosw — sin zsinw) + i(cos z sinw — sin z cos w)
cos(z + w) —isin(z + w) = (cos z cosw — sin zsinw) — i(cos z sinw — sin z cos w).
Adding and subtracting gives the addition formulas:

cos(z + w) = cos z cosw — sin z sinw

sin(z + w) = cos z sinw + sin z cos w.
4. (a) We have

cos z = cos(x + iy)
= cos z cos(iy) — sin z sin iy

= cos x cosh y — i sin x sinh y.

Similarly
sin z = sin(x + 1y)
= cos zsin(iy) + sin x cos iy
= sinx cosh y + 7 cos z sinh y.
(b) We have

| cos z|* = (cos z cosh y)? + (sin x sinh 5)?
= cos® z cosh? y + sin® z sinh? y
= cos? 2(1 — sinh? y) + sin® zsinh®

= cos’ 7 + (cos® ¥ + sin” z') sinh? y
= cos’ x + sinh? y.
Similarly, we have
| sin z|? = (sin z cosh y)? + (cos z sinh )?
= sin® z cosh? y + cos 2z sinh? y
= sin? z(1 — sinh? y) 4 cos® x sinh? y
= sin? z + (cos® z 4 sin® z) sinh? y
= sin® z + sinh? y.
(c) Note that
cosz =0 if and only if cos? z + sinh? y = 0.
If a sum of squares is zero then each term is zero. If
cost =0 and sinhy = 0,

then we have x = 7/2 plus a multiple of 7 and y = 0.
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On the other hand
sinz =0 if and only if sin? z + sinh?y = 0.

If

sinz =0 and sinhy = 0,
then we have x is a multiple of 7 and y = 0.
(d) Suppose that w is a period of sin z. Then

sinw = sin 0
=0.

As the zeroes of the sine function are all real, it follows that w is real.
But then w is a period of sinx. It follows that w is a multiple of 2.
Now suppose that w is a period of cos z. Then

cosm/2 4w = cosm/2
=0.

As the zeroes of the cosine function are all real, it follows that w is real.
But then w is a period of cosz. It follows that w is a multiple of 27.
5. (a) If

2 =re then 22 = r2e?,

Thus the function z — 22 squares the modulus and doubles the argu-

ment.
Note that for the first quadrant we have

{z€C|Re(z) >0,Im(2) >0} ={2€C|0< Arg(z) <7/2}.
and for the upper half plane
H={zeC|Im(z) >0} ={2e€C|0 < Arg(z) <7 }.

Since any positive real has a square root, 2 — 22 establishes a corre-
spondence between the first quadrant and the upper half plane.
(b) Now we want to triple the argument. If

z = re? then 23 = 330
Thus the function z — 2® cubes the modulus and triples the argu-
ment. As every positive real number is the cube of a real positive
number, the function z — 23 establishes a correspondence between
the two regions.
(c) If

z =re? then 2" = rhe™?,
Thus the function z — 2™ raises the modulus to the nth power and

multiplies the angle by n. As every positive real number is the nth
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power of a real positive number, the function z — 2" establishes a
correspondence between the two regions.
(d) If

z=re? then 1/z=r"te .
Thus the function z — 1/z takes the reciprocal of the modulus and
flips the sign of the argument. A Point inside the unit circle has mod-
ulus less than one and its reciprocal is a point of modulus greater than
one, a point outside the unit circle. As every non-zero positive real is
the reciprocal of a positive real number and every real is the negative
of another real, 2 — 1/z, maps the region

{zeCl0<|z] <1}
that is, the punctured unit disc, to the region
{zeC|1< |z}
that is, the outside of the unit disc.

Challenge Problems: (Just for fun)

6. As i = €' t1/27 for any integer n, we have
it = (12

_ €i2(2n+1/2)7r

— p—(nt1/2)m

As usual the ambiguity in the argument percolates to an ambiguity in
taking powers.

Note that 7" is ambiguous, in just the same way that a** is ambiguous.
One interpretation is

it (e—(2n+1/2+2mi)7r)i

— e (2ni+i/2—2m)w

_ l-i/242m)m

— _ie2m7r7

where m is any integer.

Another is

/Lzz _ (7;)67(277,«&»1/2)‘”

; —(2n+1/2)w
— (e(2m+1/2)17r)e

_ €(2m+1/2)¢7re—(2"+1/2>7f
- I

where m and n are arbitrary integers.
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7. We could try a Mobius transformation. We want to send three
points of the real line to three points of the unit circle.

2iz+1—1
M(z) = Lﬁ

2z —1+1

has this property. We make sure the upper half plane goes to the inside
of the unit disk and not the outside. 7 is a point of the upper half plane.
2 —1—i
22— 1—1
 —3—u
-1
The square of the modulus of this number is
12 4 32
ErsE
Thus we get a point outside the unit circle.

There are two ways to fix this. One way is to post-compose with the
reciprocal function

M(i)

=5>1.

z—1/z.

This switches the inside of the circle with the outside. This works but
then it takes some work to compute the composition (although, com-
position of Mébius transformations is in fact matrix multiplication).
Another way is to pre-compose. If the upper half plane is sent to the
outside of the unit circle then the lower half plane is sent to the inside.
The map
z— —2

switches the upper and lower half planes and so the map

—2iz+1—1
z —7
—2z—1+41

is the Mobius transformation we are looking for

8. One can solve this problem directly. Another way is to break this
problem into pieces by writing the Mobius transformation as a compo-
sition of M&bius transformations. The first step is to send r to oo (if
it is not already there). The transformation

1

Z—7T

z —

has this property. p and ¢ are mapped to two other points, necessarily

complex numbers.
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Now let us send p to 0 and at the same time fix oco. Mobius transfor-
mations that fix oo look like

z — az +b.
The transformation
z—>z—p,

fixes oo and sends p to 0. So now p and r are where we want them and
we just have to send ¢ to 1, fixing 0 and co. As transformations fixing
oo look like

z—>az+b

and so transformations that fix 0 and oo look like
Z— az.

If we want ¢ to go to 1, we let a = 1/q to get
z — z/q.

This establishes existence. To prove uniqueness uses a trick. If M; and
M, are two Mobius transformations sending p, ¢ and r to 0, 1 and oo
then the composition

My o M, !
is a Mobius transformation that sends 0, 1 and oo to 0, 1 and oo.
We already know that to fix 0 and oo the transformation must be of
the form

z2—>az

and to fix 1 means a = 1. Thus we get the Mobius transformation
e

which is the identity map. As M; o M, ! is the identity it follows that
M1 - MQ.



