
4. Roots of unity

Theorem 4.1 (De Moivre’s Theorem).

(cos θ + i sin θ)n = cosnθ + i sinnθ.

Proof. We have

(cos θ + i sin θ)n = (eiθ)n

= einθ

= cosnθ + i sinnθ. �

One can use this to derive simple formulas. For example suppose we
want to compute triple angle formulas. We use (4.1) to when n = 3.
We can expand the LHS using the binomial theorem.

(cos θ + i sin θ)3 = cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ.

Equating real and imaginary parts we get

cos 3θ = cos3 θ − 3 cos θ sin2 θ

sin 3θ = 3 cos2 θ sin θ − sin3 θ.

We can also use Euler’s formula to compute nth roots.

Example 4.2. What are the cube roots of 125?

We are looking for complex numbers z such that

z3 = 125.

We write z in polar form

z = reiθ.

Then we get the equation

r3e3iθ = 125.

Taking the modulus of both sides we see that

r3 = 125.

As r is a non-negative real number it follows that

r = 5.

If we cancel 125 from both sides, we are reduced to solving

e3iθ = 1,

that is, we are trying to find all cube roots of 1.
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What are the possible arguments of such complex numbers? One
possibility is clear, θ = 0. In other words, 1 is a cube root of one.
Another possibility is that

3θ = 2π,

so that when we add θ to itself we go once around the origin. This
gives the solution

θ =
2π

3
.

It follows that

ω =
1

2

(
−1 +

√
3i
)

is a cube root of one.
A third possibility is that we go twice around the origin, so that

3θ = 4π and θ =
4π

3
.

In this case we get the last cube root of one

ω′ =
1

2

(
−1− i

√
3
)
.

Note some interesting connections between the roots. First off ω′ is the
complex conjugate of ω:

ω′ = ω̄.

In fact it is a general fact that the roots of a real polynomial come in
complex conjugate pairs.

Lemma 4.3. Let p(x) be a real polynomial.
Then the roots of p(x) come in complex conjugate pairs.

Proof. We may suppose that

p(z) = anz
n + an−1z

n−1 + · · ·+ a0,

where a0, a1, . . . , an are real numbers. Let α be a root of p(x). We have

p(ᾱ) = an(ᾱ)n + an−1(ᾱ)n−1 + · · ·+ a0

= anαn + an−1αn−1 + · · ·+ a0

= anαn + an−1αn−1 + · · ·+ a0

= anαn + an−1αn−1 + · · ·+ a0

= p(α)

= 0

= 0.

Thus ᾱ is also a root of p(x) . �
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For example, for the polynomial

z3 − 1 = (z − 1)(z − ω)(z − ω′),
if we take the complex conjugate, the LHS is unchanged. On the RHS,
1 is fixed and so complex conjugation must switch ω and ω′.

Secondly note that

ω′ = ω2.

This is again a general fact:

Lemma 4.4. If ζ is an nth root of unity then so are all powers of ζ.

Proof. Consider α = ζa, where a is a non-negative integer. We have

αn = (ζa)n

= ζan

= (ζn)a

= 1a

= 1. �

Note that there is a simple relation between ω and ω′ = ω2. Playing
around a little bit one sees that

−ω2 = 1 + ω,

so that

ω2 + ω + 1 = 0.

In fact

z3 − 1 = (z − 1)(z2 + z + 1),

as can be seen from direct calculation.
There are similar pictures for 4th and 5th roots. The 4th roots are

±1 and ±i. i and −i are complex conjugates.

i = eiπ/2

and the other roots are powers of i:

i = i1 − 1 = i2 − i = i3 and 1 = i4.

±1 are the square roots of 1. In fact we have

z4 − 1 = (z2 − 1)(z2 + 1)

= (z − 1)(z + 1)(z2 + 1).

±i are roots of z2 + 1.
The fifth roots of 1 are

ei2mπ/5,
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where m = 0, 1, 2, 3 and 4. These are all powers of

ζ = ei2π/5.

ζ and ζ4 are complex conjugates and so are ζ2 and ζ3. We have

z5 − 1 = (z − 1)(z4 + z3 + z2 + 1),

so that ζ is a root of
z4 + z3 + z2 + 1.
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