
20. Isolated Singularities

Definition 20.1. Let f : U −→ C be a holomorphic function on a
region U . Let a /∈ U .

We say that a is an isolated singularity of f if U contains a
punctured neighbourhood of a.

Note that Log z does not have an isolated singularity at 0, since we
have to remove all of (−∞, 0] to get a continuous function. By contrast
its derivative 1/z is holomorphic except at 0 and so it has an isolated
singularity at 0.

Suppose that f has an isolated singularity at a. As a punctured
neighbourhood of a is a special type of annulus, f has a Laurent ex-
pansion centred at a,

f(z) =
∞∑

k=−∞

ak(z − a)k,

valid for

0 < |z − a| < r,

for some real r.
The behaviour at a is dictated by the negative part of the Laurent

expansion.

Definition 20.2. If f has an isolated singularity at a and all of the
coefficients ak of the Laurent expansion

f(z) =
∞∑

k=−∞

ak(z − a)k,

vanish if k < 0, then we say that f has a removable singularity.

If f has a removable singularity then in fact we can extend f to a
holomorphic function in a neighbourhood of a. Indeed, the Laurent ex-
pansion of f is a power series expansion, and this defines a holomorphic
function in a neighbourhood of a.

Example 20.3. The function

sin z

z

has a removable singularity at a.
1



Indeed,

sin z

z
=

1

z

(
z − z3

3!
+
z3

5!
+ . . .

)
= 1− z2

3!
+
z4

5!
+ . . . ,

is the Laurent series expansion of sin z/z. Visibly there are no negative
terms, so visibly

sin z

z
extends to a holomorphic function.

Theorem 20.4 (Riemann’s theorem on removable singularities). Let
f(z) be a holomorphic function which has an isolated singularity at a.

Then f(z) has a removable singularity at a if and only if f(z) is
bounded near a.

Proof. One direction is clear. If f(z) is holomorphic at a then it is
bounded at a.

Now suppose that f(z) is bounded near a. Consider the Laurent
expansion of f centred at a:

f(z) =
∑
k

ak(z − a)k.

Note that

ak =
1

2πi

∮
|z−a|=r

f(z)

(z − a)k+1
dz,

for any sufficiently small circle of radius r centred at a. We have

|ak| ≤ LM,

where L is the length of the circle and M is the largest value of the
absolute value of f(z).

The length L of the circle is 2πr. By hypothesis there is a constant
M0 such that

|f(z)| ≤M0,

near a. Thus ∣∣∣∣f(z)

zn+1

∣∣∣∣ =
|f(z)|
|zn+1|

=
|f(z)|
rn+1

≤ M0

rn+1
.
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(16.2) implies that

|an| =
∣∣∣∣ 1

2πi

∮
|z|=r

f(z) dz

zn+1

∣∣∣∣
≤ LM

≤ 2πr
M0

2πrn+1

=
M0

rn
.

As r tends to zero the last quantity tends to zero if n < 0. The only
possibility is that

|an| = 0 so that an = 0.

Thus f(z) is given by a convergent power series close to a, so that f
extends to a holomorphic function near a. �

Definition 20.5. If f has an isolated singularity at a and all of the
coefficients ak of the Laurent expansion

f(z) =
∞∑

k=−∞

ak(z − a)k,

vanish if k < −n but a−n 6= 0 then we say that f has a pole of order
n at a.

Example 20.6. The function

cos z

z

has a pole of order 1 at 0.

Theorem 20.7. Let f(z) be a holomorphic function with an isolated
singularity at a.

The following are equivalent:

(1) f has a pole of order n at a.
(2) there is a function g(z) holomorphic and non-zero at a such

that

f(z) =
g(z)

(z − a)n
.

(3) The function
1

f(z)

is holomorphic at a and has a zero of order n at a.
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Proof. Suppose that (1) holds, suppose that f has a pole of order n.
Then the Laurent expansion of f looks like

f(z) =
a−n

(z − a)n
+

a−n+1

(z − a)n−1
+· · ·+ a−1

(z − a)
+a0+a1(z−a)+a2(z−a)2+. . . .

Let

g(z) = a−n + a−n+1(z − a) + a−n+2(z − a)2 + . . . .

Then g is holomorphic at a and we have

f(z) =
g(z)

(z − a)n
.

Note that

g(a) = a−n 6= 0.

Now suppose that (2) holds. Then

1

f(z)
=

(z − a)n

g(z)
.

As g(a) 6= 0 this is holomorphic at a.
Now suppose that (3) holds. Then we may write

1

f(z)
= (z − a)ng(z),

where g(z) is holomorphic and non-zero at a. In this case

f(z) =
1

(z − a)n
h(z)

where

h(z) =
1

g(z)

is holomorphic at a. As h(z) is holomorphic at a, it has a power series
expansion

h(z) =
∑
k≥0

ak(z − a)k.

As h(z) is the reciprocal of a non-zero function a0 6= 0. Dividing
through by (z − a)n we get

f(z) =
a0

(z − a)n
+

a1
(z − a)n−1

+ . . . .

This is a Laurent series expansion starting in degree −n so that f has
a pole of order n. �

The final possibility for an isolated singularity is:
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Definition 20.8. Let f be a holomorphic function with an isolated
singularity at a.

We say that a is an essential singularity of f(z) if the Laurent
series expansion has infinitely many non-zero negative terms.

Example 20.9.

sin

(
1

z

)
has an essential singularity at 0.

Indeed

sin

(
1

z

)
= · · ·+ 1

5!z5
− 1

3!z3
+

1

z
.
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